日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,AB是的⊙O直徑,CB與⊙O相切于B,E為線段CB上一點(diǎn),連接AC、AE分別交⊙O于D、G兩點(diǎn),連接DG交CB于點(diǎn)F.

          (1)求證:C、D、G、E四點(diǎn)共圓.
          (2)若F為EB的三等分點(diǎn)且靠近E,EG=1,GA=3,求線段CE的長(zhǎng).

          【答案】
          (1)證明:連接BD,則∠AGD=∠ABD,

          ∵∠ABD+∠DAB=90°,∠C+∠CAB=90°

          ∴∠C=∠AGD,

          ∴∠C+∠DGE=180°,

          ∴C,E,G,D四點(diǎn)共圓.


          (2)解:∵EGEA=EB2,EG=1,GA=3,

          ∴EB=2,

          又∵F為EB的三等分點(diǎn)且靠近E,

          ,

          又∵FGFD=FEFC=FB2,

          ,CE=2.


          【解析】(1)連接BD,由題設(shè)條件結(jié)合圓的性質(zhì)能求出∠C=∠AGD,從而得到∠C+∠DGE=180°,由此能證明C,E,G,D四點(diǎn)共圓.(2)由切割線定理推導(dǎo)出EB=2,由此能求出CE的長(zhǎng).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面上,我們?nèi)绻靡粭l直線去截正方形的一個(gè)角,那么截下的一個(gè)直角三角形,按圖所標(biāo)邊長(zhǎng),由勾股定理有:c2a2b2。設(shè)想正方形換成正方體,把截線換成如下圖的截面,這時(shí)從正方體上截下三條側(cè)棱兩兩垂直的三棱錐OLMN,如果用S1,S2,S3表示三個(gè)側(cè)面面積,S4表示截面面積,那么你類比得到的結(jié)論是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】若函數(shù)f(x)在區(qū)間A上,對(duì)a,b,c∈A,f(a),f(b),f(c)為一個(gè)三角形的三邊長(zhǎng),則稱函數(shù)f(x)為“三角形函數(shù)”.已知函數(shù)f(x)=xlnx+m在區(qū)間[ ,e]上是“三角形函數(shù)”,則實(shí)數(shù)m的取值范圍為(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】定義域?yàn)镽的偶函數(shù)f(x)滿足對(duì)x∈R,有f(x+2)=f(x)﹣f(1),且當(dāng)x∈[2,3]時(shí),f(x)=﹣2x2+12x﹣18,若函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個(gè)零點(diǎn),則a的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓的離心率為, 傾斜角為的直線經(jīng)過(guò)橢圓的右焦點(diǎn)且與圓相切.

          (1)求橢圓 的方程;

          (2)若直線與圓相切于點(diǎn), 且交橢圓兩點(diǎn),射線于橢圓交于點(diǎn),設(shè)的面積與的面積分別為.

          ①求的最大值; ②當(dāng)取得最大值時(shí),求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】(1)求與雙曲線有相同的焦點(diǎn)且過(guò)點(diǎn)的雙曲線標(biāo)準(zhǔn)方程;

          (2)求焦點(diǎn)在直線上的拋物線的標(biāo)準(zhǔn)方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】的三邊長(zhǎng)滿足,則的取值范圍為______

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知命題p:m∈R,使得函數(shù)f(x)=x2+(m﹣1)x2﹣2是奇函數(shù),命題q:向量 =(x1 , y1), =(x2 , y2),則“ = ”是:“ ”的充要條件,則下列命題為真命題的是(
          A.p∧q
          B.(¬p)∧q
          C.p∧(¬q)
          D.(¬p)∧(¬q)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】坐標(biāo)系與參數(shù)方程在直角坐標(biāo)系xOy中,圓C的參數(shù)方程 (φ為參數(shù)).以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
          (1)求圓C的極坐標(biāo)方程;
          (2)射線OM:θ= 與圓C的交點(diǎn)為O、P兩點(diǎn),求P點(diǎn)的極坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案