日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知,a∈R.
          (1)求f(x)的解析式;
          (2)求f(x)的值域;
          (3)設(shè)h(x)=2-xf(x),a>0時,對任意x1,x2∈[-1,1]總有成立,求a的取值范圍.
          【答案】分析:(1)令t=log2x,則x=2t,故f(t)=a(2t2-2•2t+1-a.從而得出f(x)的解析式;
          (2)設(shè)m=2x,則m>0,y=am2-2m+1-a,下面對a進行分類討論:①當(dāng)a=0時,②當(dāng)a>0時,③當(dāng)a<0時,分別求出其值域即可;
          (3)函數(shù)h(x)=a•2x+(1-a)2-x-2對任意x1,x2∈[-1,1],|h(x1)-h(x2)|≤恒成立,等價于h(x)在[-1,1]內(nèi)滿足其最大值與最小值的差小于等于
          解答:解:(1)令t=log2x,則x=2t,
          故f(t)=a(2t2-2•2t+1-a.
          ∴f(x)=a(2x2-2•2x+1-a,
          (2)再設(shè)m=2x,則m>0,y=am2-2m+1-a,
          ①當(dāng)a=0時,y=-2m+1(m>0),在(0,+∞)上是減函數(shù),其值域為(-∞,1);
          ②當(dāng)a>0時,y=am2-2m+1-a的對稱軸m=>0,
          故其在(0,)上是減函數(shù),在(,+∞)上是增函數(shù).其值域為(-+1-a,+∞);
          ③當(dāng)a<0時,y=am2-2m+1-a的對稱軸m=<0,
          故其在(0,+∞)上是減函數(shù).其值域為(-∞,1-a);
          (3)∵h(x)=a•2x+(1-a)2-x-2,
          ∴h′(x)=aln2•2x-(1-a)lna•2-x,
          由h′(x)=aln2•2x-(1-a)lna•2-x=0,得x=log2(0<a<1).
          由x=log2>1得0<a<,由x=log2<-1,得a>,
          ∵h(0)=-1,h(1)=(a-1),
          由f(1)>f(0),得(a-1)>-1,得a>
          ①當(dāng)0<a≤時,h′(x)=aln2•2x-(1-a)lna•2-x<0恒成立,函數(shù)h(x)在[-1,1]上是減函數(shù),
          ∴函數(shù)h(x)在[-1,1]內(nèi)的最大值是h(-1)=-a,最小值是h(1)=(a-1).
          ∵對任意x1,x2∈[-1,1]總有成立,
          ∴-a-(a-1)≤,∴a≥2.不合,舍去.
          ②當(dāng)<a≤時,函數(shù)h(x)在[-1,x]上是減函數(shù),在(x,1]上是增函數(shù)
          ∴函數(shù)h(x)在[-1,1]內(nèi)的最大值是h(-1)=-a,最小值是h(x)=2-2.
          ∵對任意x1,x2∈[-1,1]總有成立,
          ∴-a-2+2≤,
          ≥a≥
          ③當(dāng)<a≤時,函數(shù)h(x)在[-1,x]上是減函數(shù),在(x,1]上是增函數(shù)
          ∴函數(shù)h(x)在[-1,1]內(nèi)的最大值是h(1)=(a-1),最小值是h(x)=2-2.
          ∵對任意x1,x2∈[-1,1]總有成立,
          (a-1)-2+2≤
          <a≤
          ④當(dāng)a>時,h′(x)=aln2•2x-(1-a)lna•2-x>0恒成立,函數(shù)h(x)在[-1,1]上是增函數(shù),
          ∴函數(shù)h(x)在[-1,1]內(nèi)的最大值是h(1),最小值是h(-1).
          ∵對任意x1,x2∈[-1,1]總有成立,
          (a-1)+a≤,
          ∴a≤.不合,舍去.
          綜上所述,a的取值范圍為[,].
          點評:本題考查函數(shù)的值域,考查滿足條件的實數(shù)的取值范圍的求法,考查分類討論的思想.解題的關(guān)鍵是要分析出|f(x1)-f(x2)|≤f(x)max-f(x)min
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•信陽模擬)已知集合A={y|y=x2-1,x∈R},B={x|log
          2
          3
          x>0},則A∩B=( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知集合A={x|log3x<1},B={x|2x>4},U=R,求?UA∪B.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知數(shù)學(xué)公式,a∈R.
          (1)求f(x)的解析式;
          (2)求f(x)的值域;
          (3)設(shè)h(x)=2-xf(x),a>0時,對任意x1,x2∈[-1,1]總有數(shù)學(xué)公式成立,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省揚州市高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

          已知,a∈R.
          (1)求f(x)的解析式;
          (2)求f(x)的值域;
          (3)設(shè)h(x)=2-xf(x),a>0時,對任意x1,x2∈[-1,1]總有成立,求a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案