日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓E的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過A(-2,0),B(2,0),C(1,
          32
          )
          三點(diǎn)
          (1)求橢圓方程
          (2)若此橢圓的左、右焦點(diǎn)F1、F2,過F1作直線L交橢圓于M、N兩點(diǎn),使之構(gòu)成△MNF2證明:△MNF2的周長為定值.
          分析:(1)設(shè)橢圓方程為mx2+ny2=1(m>0,n>0),將A(-2,0)、B(2,0)、C(1,
          3
          2
          )
          代入橢圓E的方程,得到關(guān)于m,n的方程組,即可解得 m=
          1
          4
          ,n=
          1
          3
          .最后寫出橢圓E的方程
          x2
          4
          +
          y2
          3
          =1

          (2)利用橢圓的定義可知|F1M|+|F2M|和|F1N|+|F2N|的值,進(jìn)而把四段距離相加即可求得答案.
          解答:解:(1)設(shè)橢圓方程為mx2+my2=1(m>0,n>0),
          將A(-2,0)、B(2,0)、C(1,
          3
          2
          )
          代入橢圓E的方程,得
          4m=1
          m+
          9
          4
          n=1

          解得 m=
          1
          4
          ,n=
          1
          3

          ∴橢圓E的方程
          x2
          4
          +
          y2
          3
          =1

          (2)利用橢圓的定義可知,|F1M|+|F2M|=2a=4,|F1N|+|F2N|=2a=4
          ∴△MNF2的周長為|F1M|+|F2M|+F1N|+|F2N|=2a+2a=4+4=8
          ∴△MNF2的周長是定值為4a=8.
          點(diǎn)評:本題主要考查橢圓的標(biāo)準(zhǔn)方程、橢圓的簡單性質(zhì),(1)問解答的關(guān)鍵是將點(diǎn)的坐標(biāo)代入方程,利用待定系數(shù)法求解,(2)問解題的關(guān)鍵是利用橢圓的第一定義..
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓E的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過A(-2,0)、B(2,0)、C(1,
          32
          )
          三點(diǎn).
          (1)求橢圓E的方程:
          (2)若點(diǎn)D為橢圓E上不同于A、B的任意一點(diǎn),F(xiàn)(-1,0),H(1,0),當(dāng)△DFH內(nèi)切圓的面積最大時(shí).求內(nèi)切圓圓心的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•閔行區(qū)二模)已知橢圓E的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過M(2,1),N(2
          2
          ,0)
          兩點(diǎn).
          (1)求橢圓E的方程;
          (2)若平行于OM的直線l在y軸上的截距為b(b<0),直線l交橢圓E于兩個(gè)不同點(diǎn)A、B,直線MA與MB的斜率分別為k1、k2,求證:k1+k2=0.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓E的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過A(-2,0)、B(2,0)、C(1,
          32
          )
          三點(diǎn).
          (1)求橢圓E的方程;
          (2)若點(diǎn)D為橢圓E上不同于A、B的任意一點(diǎn),F(xiàn)(-1,0),H(1,0),當(dāng)△DFH內(nèi)切圓的面積最大時(shí),求內(nèi)切圓圓心的坐標(biāo);
          (3)若直線l:y=k(x-1)(k≠0)與橢圓E交于M、N兩點(diǎn),證明直線AM與直線BN的交點(diǎn)在定直線上并求該直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓E的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過M(2,1)、N(2
          2
          ,0)
          兩點(diǎn),P是E上的動(dòng)點(diǎn).
          (1)求|OP|的最大值;
          (2)若平行于OM的直線l在y軸上的截距為b(b<0),直線l交橢圓E于兩個(gè)不同點(diǎn)A、B,求證:直線MA與直線MB的傾斜角互補(bǔ).

          查看答案和解析>>

          同步練習(xí)冊答案