日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù),

          (Ⅰ)若曲線處的切線相互平行,求的值及切線斜率;

          (Ⅱ)若函數(shù)在區(qū)間上單調(diào)遞減,求的取值范圍;

          (Ⅲ)設(shè)函數(shù)的圖像C1與函數(shù)的圖像C2交于P、Q兩點(diǎn),過線段PQ的中點(diǎn)作x軸的垂線分別交C1、C2于點(diǎn)M、N,證明:C1在點(diǎn)M處的切線與C2在點(diǎn)N處的切線不可能平行.

           

          【答案】

          (Ⅰ) ,;(Ⅱ) ;(Ⅲ)見解析.

          【解析】

          試題分析:(Ⅰ)由已知條件“曲線處的切線相互平行”可知,曲線在這兩處的切線的斜率相等,求出曲線的導(dǎo)數(shù),根據(jù)求出的值及切線斜率;(Ⅱ)有已知條件“函數(shù)在區(qū)間上單調(diào)遞減”可知,在區(qū)間上恒成立,得到,則有,依據(jù)二次函數(shù)在閉區(qū)間上的值域,求得函數(shù)在區(qū)間的值域是,從而得到;(Ⅲ)用反證法,先假設(shè)C1在點(diǎn)M處的切線與C2在點(diǎn)N處的切線平行,設(shè),,則有,分別代入函數(shù)與函數(shù)的導(dǎo)函數(shù),求得①,結(jié)合P、Q兩點(diǎn)是函數(shù)的圖像C1與函數(shù)的圖像C2的交點(diǎn),則坐標(biāo)滿足曲線方程,將①化簡(jiǎn)得到,設(shè),,進(jìn)行等量代換得到,存在大于1的實(shí)根,構(gòu)造函數(shù),結(jié)合導(dǎo)函數(shù)求得函數(shù)在區(qū)間是單調(diào)遞減的,從而,得出矛盾.

          試題解析:(Ⅰ),

          ∵在處的切線相互平行,

          ,即,解得,

          .

          (Ⅱ)∵在區(qū)間上單調(diào)遞減,

          在區(qū)間上恒成立,

          ,即,

          ,∴,

          .

          (Ⅲ),

          假設(shè)有可能平行,則存在使

          ,

          不妨設(shè),

          則方程存在大于1的實(shí)根,設(shè),

          ,∴,這與存在使矛盾.

          考點(diǎn):1.二次函數(shù)的圖像與性質(zhì);2.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;3.反證法;4.利用導(dǎo)數(shù)研究曲線切線的斜率;5.不等式恒成立問題

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=ax3+bx2-2x+c在x=-2時(shí)有極大值6,在x=1時(shí)有極小值,
          (1)求a,b,c的值;
          (2)求f(x)在區(qū)間[-3,3]上的最大值和最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=2
          3
          a•sinx•cosx•cos2x-6cos22x+3
          ,且f(
          π
          24
          )=0

          (Ⅰ)求函數(shù)f(x)的周期T和單調(diào)遞增區(qū)間;
          (Ⅱ)若f(θ)=-3,且θ∈(-
          24
          ,
          π
          24
          )
          ,求θ的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)y=asinx+bcosx+c的圖象上有一個(gè)最低點(diǎn)(
          11π
          6
          ,-1)

          (Ⅰ)如果x=0時(shí),y=-
          3
          2
          ,求a,b,c.
          (Ⅱ)如果將圖象上每個(gè)點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮小到原來的
          3
          π
          ,然后將所得圖象向左平移一個(gè)單位得到y(tǒng)=f(x)的圖象,并且方程f(x)=3的所有正根依次成為一個(gè)公差為3的等差數(shù)列,求y=f(x)的解析式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2-4,設(shè)曲線y=f(x)在點(diǎn)(xn,f(xn))處的切線與x軸的交點(diǎn)為(xn+1,0)(n∈N*),其中x1為正實(shí)數(shù).
          (Ⅰ)用xn表示xn+1;
          (Ⅱ)若x1=4,記an=lg
          xn+2xn-2
          ,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項(xiàng)公式;
          (Ⅲ)若x1=4,bn=xn-2,Tn是數(shù)列{bn}的前n項(xiàng)和,證明Tn<3.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
          π
          2
          )的部分圖象如圖所示,則函數(shù)f(x)的解析式為(  )
          A、f(x)=2sin(
          1
          2
          x+
          π
          6
          )
          B、f(x)=2sin(
          1
          2
          x-
          π
          6
          )
          C、f(x)=2sin(2x-
          π
          6
          )
          D、f(x)=2sin(2x+
          π
          6
          )

          查看答案和解析>>

          同步練習(xí)冊(cè)答案