日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知F1(-1,0),F(xiàn)2(1,0)為橢圓
          x2
          a2
          +
          y2
          b2
          =1
          的兩個(gè)焦點(diǎn),若橢圓上一點(diǎn)P滿足|
          PF1
          |+|
          PF2
          |=4
          ,則橢圓的離心率e=( 。
          分析:根據(jù)橢圓的定義,可得2a=|
          PF1
          |+|
          PF2
          |
          =4,從而得到a=2,再由焦點(diǎn)坐標(biāo)得到c=1,結(jié)合離心率公式即可得到該橢圓的離心率的值.
          解答:解:∵橢圓
          x2
          a2
          +
          y2
          b2
          =1
          的兩個(gè)焦點(diǎn)為F1、F2,橢圓上一點(diǎn)P滿足|
          PF1
          |+|
          PF2
          |=4
          ,
          ∴根據(jù)橢圓的定義得2a=|
          PF1
          |+|
          PF2
          |
          ,即2a=4,得a=2
          ∵兩個(gè)焦點(diǎn)為F1(-1,0),F(xiàn)2(1,0)
          ∴c=1,可得橢圓的離心率e=
          c
          a
          =
          1
          2

          故選:C
          點(diǎn)評(píng):本題給出橢圓上一點(diǎn)到兩個(gè)焦點(diǎn)的距離,求橢圓的離心率.著重考查了橢圓的標(biāo)準(zhǔn)方程和簡(jiǎn)單幾何性質(zhì)等知識(shí)點(diǎn),屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知F1(-1,0),F(xiàn)2(1,0),A(
          1
          2
          ,0),動(dòng)點(diǎn)P滿足3
          PF1
          PA
          +
          PF2
          PA
          =0.
          (1)求動(dòng)點(diǎn)P的軌跡方程.
          (2)是否存在點(diǎn)P,使PA成為∠F1PF2的平分線?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知F1(-1,0),F(xiàn)2(1,0),點(diǎn)p滿足|
          PF
          1
          |+|
          PF
          2
          |=2
          2
          ,記點(diǎn)P的軌跡為E.
          (Ⅰ)求軌跡E的方程;
          (Ⅱ)過點(diǎn)F2(1,0)作直線l與軌跡E交于不同的兩點(diǎn)A、B,設(shè)
          F2A
          F2B
          ,T(2,0),,若λ∈[-2,-1],求|
          TA
          +
          TB
          |
          的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知F1(-1,0)、F2(1,0)為橢圓的焦點(diǎn),且直線x+y-
          7
          =0
          與橢圓相切.
          (Ⅰ)求橢圓方程;
          (Ⅱ)過F1的直線交橢圓于A、B兩點(diǎn),求△ABF2的面積S的最大值,并求此時(shí)直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知F1(-1,0),F(xiàn)2(1,0)是橢圓
          x2
          a2
          +
          y2
          b2
          =1的兩個(gè)焦點(diǎn),點(diǎn)G與F2關(guān)于直線l:x-2y+4=0對(duì)稱,且GF1與l的交點(diǎn)P在橢圓上.
          (I)求橢圓方程;
          (II)若P、M(x1,y1),N(x2,y2)是橢圓上的不同三點(diǎn),直線PM、PN的傾斜角互補(bǔ),問直線MN的斜率是否是定值?如果是,求出該定值,如果不是,說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案