日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,圓F:(x-1)2+y2=1和拋物線x=
          y2
          4
          ,過(guò)F的直線與拋物線和圓依次交于A、B、C、D四點(diǎn),求|AB|•|CD|的值是( 。
          分析:可分兩類討論,若直線的斜率不存在,則直線方程為x=1,代入拋物線方程和圓的方程,可直接得到ABCD四個(gè)點(diǎn)的坐標(biāo),從而|AB||CD|=1.
          若直線的斜率存在,設(shè)為直線方程為y=k(x-1),不妨設(shè)A(x1,y1),B(x2,y2),過(guò)AB分別作拋物線準(zhǔn)線的垂線,由拋物線的定義,|AF|=x1+1,|DF|=x2+1,把直線方程與拋物線方程聯(lián)立,消去y可得k2x2-(2k2+4)x+k2=0,利用韋達(dá)定理及|AB|=|AF|-|BF|=x1,|CD|=|DF|-|CF|=x2,可求|AB||CD|的值.
          解答:解:若直線的斜率不存在,則直線方程為x=1,代入拋物線方程和圓的方程,可直接得到ABCD四個(gè)點(diǎn)的坐標(biāo)為(1,2)(1,1)(1,-1)(1,-2),所以|AB|=1,|CD|=1,從而|AB||CD|=1.
          若直線的斜率存在,設(shè)為k,因?yàn)橹本過(guò)拋物線的焦點(diǎn)(1,0),則直線方程為y=k(x-1),
          不妨設(shè)A(x1,y1),B(x2,y2),過(guò)AB分別作拋物線準(zhǔn)線的垂線,由拋物線的定義,|AF|=x1+1,|DF|=x2+1,
          把直線方程與拋物線方程聯(lián)立,消去y可得k2x2-(2k2+4)x+k2=0,由韋達(dá)定理有 x1x2=1
          而拋物線的焦點(diǎn)F同時(shí)是已知圓的圓心,所以|BF|=|CF|=R=1
          從而有|AB|=|AF|-|BF|=x1,|CD|=|DF|-|CF|=x2
          所以|AB||CD|=x1x2=1
          故選A.
          點(diǎn)評(píng):本題考查圓與拋物線的綜合,考查分類討論的數(shù)學(xué)思想,考查拋物線的定義,綜合性強(qiáng).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,圓A的方程為:(x+3)2+y2=100,定點(diǎn)B(3,0),動(dòng)點(diǎn)P為圓A上的任意一點(diǎn).線段BP的垂直平分線和半徑AP相交于點(diǎn)Q,當(dāng)點(diǎn)P在圓A上運(yùn)動(dòng)時(shí),
          (1)求|QA|+|QB|的值,并求動(dòng)點(diǎn)Q的軌跡方程;
          (2)設(shè)Q點(diǎn)的橫坐標(biāo)為x,記PQ的長(zhǎng)度為f(x),求函數(shù)f (x)的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖所示,已知圓C:(x+1)2+y2=8,定點(diǎn)A(1,0),M為圓C上一動(dòng)點(diǎn),點(diǎn)P在線段AM上,點(diǎn)N在線段CM上,且滿足
          AM
          =2
          AP
          ,
          NP
          AM
          =0
          ,點(diǎn)N的軌跡為曲線E.
          (1)求曲線E的方程;
          (2)若過(guò)定點(diǎn)F(0,2)的直線交曲線E于不同的兩點(diǎn)G、H(點(diǎn)G在點(diǎn)F、H之間),且滿足
          FG
          FH
          ,求λ
          的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,點(diǎn)F是橢圓W:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左焦點(diǎn),A、B分別是橢圓的右頂點(diǎn)與上頂點(diǎn),橢圓的離心率為
          1
          2
          ,三角形ABF的面積為
          3
          3
          2
          ,
          (Ⅰ)求橢圓W的方程;
          (Ⅱ)對(duì)于x軸上的點(diǎn)P(t,0),橢圓W上存在點(diǎn)Q,使得PQ⊥AQ,求實(shí)數(shù)t的取值范圍;
          (Ⅲ)直線l:y=kx+m(k≠0)與橢圓W交于不同的兩點(diǎn)M、N (M、N異于橢圓的左右頂點(diǎn)),若以MN為直徑的圓過(guò)橢圓W的右頂點(diǎn)A,求證:直線l過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年四川省成都市新都區(qū)香城中學(xué)高二(上)期中數(shù)學(xué)試卷(解析版) 題型:選擇題

          如圖,圓F:(x-1)2+y2=1和拋物線,過(guò)F的直線與拋物線和圓依次交于A、B、C、D四點(diǎn),求|AB|•|CD|的值是( )

          A.1
          B.2
          C.3
          D.無(wú)法確定

          查看答案和解析>>

          同步練習(xí)冊(cè)答案