日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知圓C:(x+1)2+(y-2)2=4
          (1)若直線l:y=k(x-2)與圓C有且只有一個公共點,求直線l的斜率k的值;
          (2)若直線m:y=kx+2被圓C截得的弦AB滿足OA⊥OB(O是坐標(biāo)原點),求直線m的方程.
          分析:(1)由圓的方程找出圓心C坐標(biāo),以及半徑r,根據(jù)直線l與圓C有且只有一個公共點,得到直線l與圓C相切,得到圓心到直線的距離d=r,利用點到直線的距離公式列出關(guān)于k的方程,求出方程的解得到k的值即可;
          (2)設(shè)直線m與圓C的兩交點A(x1,y1),B(x2,y2),由OA與OB垂直,利用兩直線垂直時斜率滿足的關(guān)系列出關(guān)系式x1x2=-y1y2,將直線m與圓C方程聯(lián)立,利用韋達(dá)定理列出關(guān)系式,代入x1x2=-y1y2中計算求出k的值,即可確定出直線m方程.
          解答:解:(1)由圓的方程得:圓心C(-1,2),半徑r=2,
          由直線l與圓C只有一個公共點,得到直線l與圓C相切,
          ∴圓心到直線l距離d=
          |-3k-2|
          k2+1
          =2,
          整理得:5k2+12k=0,即k(5k+12)=0,
          解得:k=0或k=-
          12
          5
          ;
          (2)設(shè)直線m與圓C的兩交點A(x1,y1),B(x2,y2),
          ∵OA⊥OB,∴x1x2=-y1y2,
          聯(lián)立直線m與圓C方程得:
          y=kx+2①
          (x+1)2+(y-2)2=4②

          將①代入②得:(x+1)2+(kx)2=4,即(k2+1)x2+2x-3=0,
          ∴x1x2=
          -3
          k2+1
          ,x1+x2=-
          2
          k2+1

          y1y2=(kx1+2)(kx2+1)=k2x1x2+k(x1+x2)+2,
          ∴x1x2=-y1y2=-k2x1x2-k(x1+x2)-2,即(k2+1)x1x2+k(x1+x2)+2=0,
          ∴-3-
          2k
          k2+1
          +2=0,即
          2k
          k2+1
          =-1,
          整理得:k2+2k+1=0,即(k+1)2=0,
          解得:k=-1,
          則直線m方程為y=-x+2.
          點評:此題考查了直線與圓的位置關(guān)系,以及直線的一般式方程,熟練掌握運算法則是解本題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知圓C:(x+1)2+y2=25及點A(1,0),Q為圓上一點,AQ的垂直平分線交CQ于M,則點M的軌跡方程為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知圓C:(x-1)2+y2=9內(nèi)有一點P(2,2),過點P作直線l交圓C于A、B
          (1)當(dāng)弦AB被點P平分時,寫出直線l的方程;
          (2)當(dāng)直線l的傾斜角為45°時,求弦AB的長.
          (3)設(shè)圓C與x軸交于M、N兩點,有一動點Q使∠MQN=45°.試求動點Q的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知圓C:(x-1)2+y2=9內(nèi)有一點P(2,2),過點P作直線l交圓C于A、B兩點.
          (1)當(dāng)l經(jīng)過圓心C時,求直線l的方程;
          (2)當(dāng)弦AB的長為4
          2
          時,寫出直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知圓C:(x-1)2+(y-2)2=5,直線l:x-y=0,則C關(guān)于l的對稱圓C′的方程為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知圓C:(x-1)2+(y+1)2=1,那么圓心C到坐標(biāo)原點O的距離是
          2
          2

          查看答案和解析>>

          同步練習(xí)冊答案