日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=mx+3,g(x)=x2+2x+m,
          (1)求證:函數(shù)f(x)-g(x)必有零點;
          (2)設(shè)函數(shù)G(x)=f(x)-g(x)-1,若|G(x)|在[-1,0]上是減函數(shù),求實數(shù)m的取值范圍.
          分析:(1)函數(shù)f(x)-g(x)的零點即為,方程f(x)-g(x)=0的根,根據(jù)已知中函數(shù)f(x)=mx+3,g(x)=x2+2x+m,構(gòu)造方程f(x)-g(x)=0,判斷其△的與0的關(guān)系,即可得到結(jié)論.
          (2)由已知中函數(shù)G(x)=f(x)-g(x)-1,我們可得到函數(shù)G(x)的解析式,分析二次函數(shù)G(x)的值域,進而根據(jù)對折變換確定函數(shù)y=|G(x)|的圖象及性質(zhì),進而得到滿足條件的實數(shù)m的取值范圍.
          解答:解:(1)證明∵f(x)-g(x)=-x2+(m-2)x+3-m
          又∵f(x)-g(x)=-x2+(m-2)x+3-m=0時,
          則△=(m-2)2-4(m-3)=(m-4)2≥0恒成立,
          所以方程f(x)-g(x)=-x2+(m-2)x+3-m=0有解
          函數(shù)f(x)-g(x)必有零點
          解:(2)G(x)=f(x)-g(x)-1=-x2+(m-2)x+2-m
          ①令G(x)=0則△=(m-2)2-4(m-2)=(m-2)(m-6)
          當(dāng)△≤0,2≤m≤6時G(x)=-x2+(m-2)x+2-m≤0恒成立
          所以,|G(x)|=x2+(2-m)x+m-2,在[-1,0]上是減函數(shù),則2≤m≤6
          ②△>0,m<2,m>6時|G(x)|=|x2+(2-m)x+m-2|
          因為|G(x)|在[-1,0]上是減函數(shù)
          所以方程x2+(2-m)x+m-2=0的兩根均大于0得到m>6
          或者一根大于0而另一根小于0且x=
          m-2
          2
          ≤-1
          ,得到m≤0
          綜合①②得到m的取值范圍是(-∞,0]∪[2,+∞).
          點評:本題考查的知識點是函數(shù)單調(diào)性的性質(zhì),二次函數(shù)的性質(zhì),函數(shù)零點的判定定理,其中熟練掌握二次函數(shù)、一元二次方程、一元二次不等式的辯證關(guān)系是解答本題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=m•2x+t的圖象經(jīng)過點A(1,1)、B(2,3)及C(n,Sn),Sn為數(shù)列{an}的前n項和,n∈N*
          (1)求Sn及an;
          (2)若數(shù)列{cn}滿足cn=6nan-n,求數(shù)列{cn}的前n項和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=m(x+
          1
          x
          )的圖象與h(x)=(x+
          1
          x
          )+2的圖象關(guān)于點A(0,1)對稱.
          (1)求m的值;
          (2)若g(x)=f(x)+
          a
          4x
          在(0,2]上是減函數(shù),求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          m
          n
          ,其中
          m
          =(sinωx+cosωx,
          3
          cosωx)
          n
          =(cosωx-sinωx,2sinωx),其中ω>0,若f(x)相鄰兩對稱軸間的距離不小于
          π
          2

          (Ⅰ)求ω的取值范圍;
          (Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對邊,a=
          3
          ,b+c=3,當(dāng)ω最大時,f(A)=1,求△ABC的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          以下兩題任選一題:(若兩題都作,按第一題評分)
          (一):在極坐標系中,圓ρ=2cosθ的圓心到直線θ=
          π
          3
          (ρ∈R)的距離
          3
          2
          3
          2
          ;
          (二):已知函數(shù)f(x)=m-|x-2|,m∈R,當(dāng)不等式f(x+2)≥0的解集為[-2,2]時,實數(shù)m的值為
          2
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集為[-1,1].
          (1)求m的值;
          (2)若a,b,c∈R+,且
          1
          a
          +
          1
          2b
          +
          1
          3c
          =m,求Z=a+2b+3c的最小值.

          查看答案和解析>>

          同步練習(xí)冊答案