日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 37、已知直三棱柱ABC-A1B1C1中,AC=BC,M,N分別是A1B1,AB的中點(diǎn),P點(diǎn)在線段B1C上,則NP與平面AMC1的位置關(guān)系是
          平行
          分析:構(gòu)造三角形B1NP,證明平面AMC1與平面B1NC平行,即可求解.
          解答:解:由題設(shè)知B1M∥AN且B1M=AN,
          四邊形ANB1M是平行四邊形,
          ∴B1N∥AM,B1N∥AMC1平面.
          又C1M∥CN,得CN∥平面AMC1,
          則平面B1NC∥AMC1,NP 平面B1NC,
          ∴NP∥平面AMC1
          故答案為平行.
          點(diǎn)評:此題考查直線與平面平行的判斷,此題先證明兩個面平行,再證直線和面平行,這種做題思想要記。
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分別是棱CC1、AB中點(diǎn).
          (Ⅰ)求證:CF⊥BB1;
          (Ⅱ)求四棱錐A-ECBB1的體積;
          (Ⅲ)判斷直線CF和平面AEB1的位置關(guān)系,并加以證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知直三棱柱ABC-A1B1C1的所有棱長都相等,且D,E,F(xiàn)分別為BC,BB1,AA1的中點(diǎn).
          (I) 求證:平面B1FC∥平面EAD;
          (II)求證:BC1⊥平面EAD.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖所示,已知直三棱柱ABC-A′B′C′,AC=AB=AA′=2,AC,AB,AA′兩兩垂直,E,F(xiàn),H分別是AC,AB,BC的中點(diǎn),
          (I)證明:EF⊥AH;    
          (II)求四面體E-FAH的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知直三棱柱ABC-A1B1C1的側(cè)棱長為2,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2,D是A A1的中點(diǎn).
          (Ⅰ)求異面直線AB和C1D所成的角(用反三角函數(shù)表示);
          (Ⅱ)若E為AB上一點(diǎn),試確定點(diǎn)E在AB上的位置,使得A1E⊥C1D;
          (Ⅲ)在(Ⅱ)的條件下,求點(diǎn)D到平面B1C1E的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知直三棱柱ABC-A1B1C1中,AB=AC;M.N.P分別是棱BC.CC1.B1C1的中點(diǎn).A1Q=3QA, BC=
          2
          AA1

          (Ⅰ)求證:PQ∥平面ANB1;
          (Ⅱ)求證:平面AMN⊥平面AMB1

          查看答案和解析>>

          同步練習(xí)冊答案