日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知z是復(fù)數(shù),
          .
          z
          +2
          2-i
          =1+i
          ,則z等于( 。
          分析:設(shè)z=a+bi(a,b∈R),則
          .
          z
          =a-bi
          ,將
          .
          z
          +2
          2-i
          的分子分母都乘以分母的共軛復(fù)數(shù)把分母實(shí)數(shù)化,再根據(jù)復(fù)數(shù)相等解出即可.
          解答:解:設(shè)z=a+bi(a,b∈R),則
          .
          z
          =a-bi
          ,
          .
          z
          +2
          2-i
          =1+i
          ,∴
          (a+2-bi)(2+i)
          (2-i)(2+i)
          =1+i
          ,∴2a+b+4+(a+2-2b)i=5+5i.
          根據(jù)復(fù)數(shù)相等的定義得:
          2a+b+4=5
          a+2-2b=5
          ,解得
          a=1
          b=-1
          ,
          ∴z=1-i.
          故選A.
          點(diǎn)評:本題考查了復(fù)數(shù)的運(yùn)算及基本概念,深刻理解復(fù)數(shù)的基本概念和運(yùn)算法則是解決問題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知z是復(fù)數(shù),z+2i,
          z2-i
          均為實(shí)數(shù)(i為虛數(shù)單位).
          (1)求z;
          (2)如果復(fù)數(shù)(z-ai)2在復(fù)平面上對應(yīng)的點(diǎn)在第一象限,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2005•上海)已知z是復(fù)數(shù),z+2i,
          z2-i
          均為實(shí)數(shù)(i為虛數(shù)單位),且復(fù)數(shù)(z+ai)2在復(fù)平面上對應(yīng)的點(diǎn)在第一象限,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知z是復(fù)數(shù),z+i和
          z1-i
          都是實(shí)數(shù)
          ,(1)求復(fù)數(shù)z;(2)設(shè)關(guān)于x的方程x2+x(1+z)-(3m-1)i=0有實(shí)根,求純虛數(shù)m.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知z是復(fù)數(shù),z+3i、
          z3-i
          均為實(shí)數(shù)(i為虛數(shù)單位),
          (1)求復(fù)數(shù)z;
          (2)求一個(gè)以z為根的實(shí)系數(shù)一元二次方程.

          查看答案和解析>>

          同步練習(xí)冊答案