【題目】已知橢圓的兩個(gè)焦點(diǎn)為
,
,橢圓上一動(dòng)點(diǎn)
到
,
距離之和為4,當(dāng)
到
軸上的射影恰為
時(shí),
,左、右頂點(diǎn)分別為
,
,
為坐標(biāo)原點(diǎn),經(jīng)過(guò)點(diǎn)
的直線
與橢圓
交于
,
兩點(diǎn).
(1)求橢圓的方程;
(2)記與
的面積分別為
,
,求
的最大值.
【答案】(1)橢圓的方程為:
(2)
的最大值為
【解析】
(1)先根據(jù)橢圓的定義得,再由
到
軸上的射影恰為
時(shí),
得關(guān)于
的方程,最后結(jié)合橢圓中
,解方程組即可求解.
(2)根據(jù)題意設(shè)直線的方程為:
,與橢圓方程聯(lián)立,得到兩根和、兩根積,再將
整理為韋達(dá)定理的形式,代入化簡(jiǎn)即可求解.
解:(1)由題意知:,所以
①,
又,且
,
所以 ②,
又③,
由①②③得:,
所以橢圓的方程為:
.
(2)由題意直線過(guò)點(diǎn)
,且斜率不為0,
所以設(shè)直線的方程為:
,
聯(lián)立
得:
,
設(shè)點(diǎn),
則,
因?yàn)?/span>,
,
所以,
又,
所以,
當(dāng)且僅當(dāng)時(shí),等號(hào)成立,
所以的最大值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,
為
的中點(diǎn),
為
的中點(diǎn),
為
的中點(diǎn),
,
,
平面
.
(1)求證:平面平面
;
(2)求二面角的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知菱形的對(duì)角線
交于點(diǎn)
,點(diǎn)
為線段
的中點(diǎn),
,
,將三角形
沿線段
折起到
的位置,
,如圖2所示.
(Ⅰ)證明:平面
平面
;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠為生產(chǎn)一種精密管件研發(fā)了一臺(tái)生產(chǎn)該精密管件的車(chē)床,該精密管件有內(nèi)外兩個(gè)口徑,監(jiān)管部門(mén)規(guī)定“口徑誤差”的計(jì)算方式為:管件內(nèi)外兩個(gè)口徑實(shí)際長(zhǎng)分別為,標(biāo)準(zhǔn)長(zhǎng)分別為
則“口徑誤差”為
只要“口徑誤差”不超過(guò)
就認(rèn)為合格,已知這臺(tái)車(chē)床分晝夜兩個(gè)獨(dú)立批次生產(chǎn).工廠質(zhì)檢部在兩個(gè)批次生產(chǎn)的產(chǎn)品中分別隨機(jī)抽取40件作為樣本,經(jīng)檢測(cè)其中晝批次的40個(gè)樣本中有4個(gè)不合格品,夜批次的40個(gè)樣本中有10個(gè)不合格品.
(Ⅰ)以上述樣本的頻率作為概率,在晝夜兩個(gè)批次中分別抽取2件產(chǎn)品,求其中恰有1件不合格產(chǎn)品的概率;
(Ⅱ)若每批次各生產(chǎn)1000件,已知每件產(chǎn)品的成本為5元,每件合格品的利潤(rùn)為10元;若對(duì)產(chǎn)品檢驗(yàn),則每件產(chǎn)品的檢驗(yàn)費(fèi)用為2.5元;若有不合格品進(jìn)入用戶手中,則工廠要對(duì)用戶賠償,這時(shí)生產(chǎn)的每件不合格品工廠要損失25元.以上述樣本的頻率作為概率,以總利潤(rùn)的期望值為決策依據(jù),分析是否要對(duì)每個(gè)批次的所有產(chǎn)品作檢測(cè)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓Γ:的左,右焦點(diǎn)分別為F1(
,0),F2(
,0),橢圓的左,右頂點(diǎn)分別為A,B,已知橢圓Γ上一異于A,B的點(diǎn)P,PA,PB的斜率分別為k1,k2,滿足
.
(1)求橢圓Γ的標(biāo)準(zhǔn)方程;
(2)若過(guò)橢圓Γ左頂點(diǎn)A作兩條互相垂直的直線AM和AN,分別交橢圓Γ于M,N兩點(diǎn),問(wèn)x軸上是否存在一定點(diǎn)Q,使得∠MQA=∠NQA成立,若存在,則求出該定點(diǎn)Q,否則說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩個(gè)同樣的紅球、兩個(gè)同樣的黑球和兩個(gè)同樣的白球放入下列6個(gè)格中,要求同種顏色的球不相鄰,則可能的放球方法共有______種.(用數(shù)字作答)
1 | 2 | 3 | 4 | 5 | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐,底面
為正方形,且
底面
,過(guò)
的平面與側(cè)面
的交線為
,且滿足
(
表示
的面積).
(1)證明: 平面
;
(2)當(dāng)時(shí),二面角
的余弦值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),圓
:
,定點(diǎn)
,點(diǎn)
是圓
上一動(dòng)點(diǎn),線段
的垂直平分線交圓
的半徑
于點(diǎn)
,點(diǎn)
的軌跡為
.
(Ⅰ)求曲線的方程;
(Ⅱ)不垂直于軸且不過(guò)
點(diǎn)的直線
與曲線
相交于
兩點(diǎn),若直線
、
的斜率之和為0,則動(dòng)直線
是否一定經(jīng)過(guò)一定點(diǎn)?若過(guò)一定點(diǎn),則求出該定點(diǎn)的坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩動(dòng)圓和
(
),把它們的公共點(diǎn)的軌跡記為曲線
,若曲線
與
軸的正半軸的交點(diǎn)為
,且曲線
上的相異兩點(diǎn)
滿足:
.
(1)求曲線的軌跡方程;
(2)證明直線恒經(jīng)過(guò)一定點(diǎn),并求此定點(diǎn)的坐標(biāo);
(3)求面積
的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com