日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=x2-ax-aln(x-1)(a∈R).
          (1)求函數(shù)f(x)的單調(diào)區(qū)間;
          (2)試判斷是否存在實(shí)數(shù)a(a≥1),使y=f(x)的圖象與直線無(wú)公共點(diǎn)(其中自然對(duì)數(shù)的底數(shù)為無(wú)理數(shù)且=2.71828…).
          【答案】分析:(1)先求函數(shù)的導(dǎo)函數(shù)f′(x),再解不等式f′(x)>0,f′(x)>0即可得函數(shù)的單調(diào)增區(qū)間和單調(diào)減區(qū)間,由于導(dǎo)函數(shù)中含有參數(shù)a,故要解不等式需討論a的正負(fù);
          (2)先利用(1)中的結(jié)論,求a≥1時(shí)函數(shù)f(x)的最小值g(a),再利用導(dǎo)數(shù)證明函數(shù)g(a)的最大值大于1+ln,從而說(shuō)明存在實(shí)數(shù)a(a≥1)使f(x)的最小值大于,從而證明存在實(shí)數(shù)a(a≥1),使y=f(x)的圖象與直線無(wú)公共點(diǎn).
          解答:解:(1)函數(shù)f(x)=x2-ax-aln(x-1)(a∈R)的定義域是(1,+∞).
          ①若a≤0,則在(1,+∞)上恒成立,
          ∴a≤0時(shí),f(x)的增區(qū)間為(1,+∞)
          ②若a>0,則,故當(dāng)時(shí),;當(dāng)時(shí),
          ∴a>0時(shí),f(x)的減區(qū)間為的增區(qū)間為
          (2)a≥1時(shí),由(1)可知,f(x)在(1,+∞)上的最小值為
          設(shè),( a≥1)
          ,
          在[1,+∞)上為減函數(shù),∴g′(a)
          在[1,+∞)上單調(diào)遞減,
          ∴g(a)max=g(1)=+ln2,
          +ln2-1-ln=ln>0,∴g(a)max>1+ln
          ∴存在實(shí)數(shù)a(a≥1)使f(x)的最小值大于,
          故存在實(shí)數(shù)a(a≥1),使y=f(x)的圖象與直線無(wú)公共點(diǎn).
          點(diǎn)評(píng):本題主要考查了導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用,利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,利用函數(shù)單調(diào)性求函數(shù)的最值的方法,分類(lèi)討論和轉(zhuǎn)化化歸的思想方法
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
          π
          2
          )的部分圖象如圖所示,則f(x)的解析式是( 。
          A、f(x)=2sin(πx+
          π
          6
          )(x∈R)
          B、f(x)=2sin(2πx+
          π
          6
          )(x∈R)
          C、f(x)=2sin(πx+
          π
          3
          )(x∈R)
          D、f(x)=2sin(2πx+
          π
          3
          )(x∈R)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•深圳一模)已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿(mǎn)足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2011•上海模擬)已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
          (2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

          已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
          (2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

          已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿(mǎn)足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案