已知直線l1:(t為參數(shù))與直線l2:2x-4y=5相交于點(diǎn)B,又點(diǎn)A(1,2),求|AB|.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個坐標(biāo)系取相等的長度單位,已知直線 的參數(shù)方程為
(t為參數(shù),
),曲線C的極坐標(biāo)方程為
.
(Ⅰ)求曲線C的直角坐標(biāo)方程。
(Ⅱ)設(shè)直線 與曲線C相交于A,B兩點(diǎn),當(dāng)a變化時,求
的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線
的極坐標(biāo)方程為
,過點(diǎn)
的直線
的參數(shù)方程為
(
為參數(shù)),直線
與曲線
相交于
兩點(diǎn).
(1)寫出曲線的直角坐標(biāo)方程和直線
的普通方程;
(2)若,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (θ為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,直線l的方程為ρsin
=2
.
(1)求曲線C在極坐標(biāo)系中的方程;
(2)求直線l被曲線C截得的弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,
是過定點(diǎn)
且傾斜角為
的直線;在極坐標(biāo)系(以坐標(biāo)原點(diǎn)
為極點(diǎn),以
軸非負(fù)半軸為極軸,取相同單位長度)中,曲線
的極坐標(biāo)方程為
.
(I)寫出直線的參數(shù)方程;并將曲線
的方程化為直角坐標(biāo)方程;
(II)若曲線與直線相交于不同的兩點(diǎn)
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,圓
的極坐標(biāo)方程為
.
(I)將圓的參數(shù)方程化為普通方程,將圓
的極坐標(biāo)方程化為直角坐標(biāo)方程;
(II)圓、
是否相交,若相交,請求出公共弦的長;若不相交,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知極坐標(biāo)方程為ρcosθ+ρsinθ-1=0的直線與x軸的交點(diǎn)為P,與橢圓(θ為參數(shù))交于點(diǎn)A、B,求PA·PB的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com