日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,已知 2S△ABC=
          3
           
          BA
           • 
          BC

          (Ⅰ)求角B;
          (Ⅱ)若b=2,求a+c的取值范圍.
          分析:(Ⅰ)在△ABC中,由條件求得 2×
          1
          2
          ac•sinB=
          3
          •ac•cosB,解得tanB=
          3
          ,可得 B的值.
          (Ⅱ)若b=2,則由余弦定理可得 b2=4=(a+c)2-3ac,再由基本不等式可得a+c≤4,結(jié)合a+c>b=2 求得a+c的范圍.
          解答:解:(Ⅰ)∵在△ABC中,2S△ABC=
          3
           
          BA
           • 
          BC
          ,∴2×
          1
          2
          ac•sinB=
          3
          •ac•cosB,解得tanB=
          3
          ,∴B=
          π
          3

          (Ⅱ)若b=2,則由余弦定理可得 b2=4=a2+c2-2ac•cosB=(a+c)2-3ac≥(a+c)2-3•(
          a+c
          2
          )
          2
          =
          (a+c)2
          4
          ,
          ∴a+c≤4 當(dāng)且僅當(dāng)a=c時(shí),等號(hào)成立.
          再由a+c>b=2 可得,a+c的范圍為(2,4].
          點(diǎn)評(píng):本題主要考查正弦定理、余弦定理、基本不等式的應(yīng)用,根據(jù)三角函數(shù)的值求角,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,若b2+c2-a2=
          3
          bc
          ,且b=
          3
          a
          ,則下列關(guān)系一定不成立的是( 。
          A、a=c
          B、b=c
          C、2a=c
          D、a2+b2=c2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知B=60°,cos(B+C)=-
          1114

          (1)求cosC的值;
          (2)若bcosC+acosB=5,求△ABC的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且bsinA=
          3
          acosB

          (1)求角B的大;
          (2)若a=4,c=3,D為BC的中點(diǎn),求△ABC的面積及AD的長(zhǎng)度.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c并且滿足
          b
          a
          =
          sinB
          cosA

          (1)求∠A的值;
          (2)求用角B表示
          2
          sinB-cosC
          ,并求它的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在△ABC中,角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c,且a=
          5
          ,b=3,sinC=2sinA
          ,則sinA=
           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案