【題目】如圖,已知一個八面體各棱長均為1,四邊形ABCD為正方形,則下列命題中不正確的是
A. 不平行的兩條棱所在直線所成的角為或
B. 四邊形AECF為正方形
C. 點(diǎn)A到平面BCE的距離為 D. 該八面體的頂點(diǎn)在同一個球面上
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù),關(guān)于實數(shù)
的不等式
的解集為
.
(1)當(dāng)時,解關(guān)于
的不等式:
;
(2)是否存在實數(shù),使得關(guān)于
的函數(shù)
的最小值為-5?若存在,求實數(shù)
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知圓錐曲線(
為參數(shù))和定點(diǎn)
,
、
是此圓錐曲線的左、右焦點(diǎn),以原點(diǎn)
為極點(diǎn),以
軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線的直角坐標(biāo)方程;
(2)經(jīng)過點(diǎn)且與直線
垂直的直線
交此圓錐曲線于
、
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且
.
(1)若函數(shù)在區(qū)間
上是減函數(shù),求實數(shù)
的取值范圍;
(2)設(shè)函數(shù),當(dāng)
時,
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是公差為
的等差數(shù)列,
是公比為
的等比數(shù)列. 記
.
(1)求證: 數(shù)列為等比數(shù)列;
(2)已知數(shù)列的前
項分別為
.
①求數(shù)列和
的通項公式;
②是否存在元素均為正整數(shù)的集合,使得數(shù)列
等差數(shù)列?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:
,直線
:
.
(Ⅰ)求直線被圓
所截得的弦長最短時
的值及最短弦長;
(Ⅱ)已知坐標(biāo)軸上點(diǎn)和點(diǎn)
滿足:存在圓
上的兩點(diǎn)
和
,使得
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù)
.
(1)求證:曲線在點(diǎn)
處的切線過定點(diǎn);
(2)若是
在區(qū)間
上的極大值,但不是最大值,求實數(shù)
的取值范圍;
(3)求證:對任意給定的正數(shù),總存在
,使得
在
上為單調(diào)函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓.
(1)若直線過定點(diǎn)
,且與圓
相切,求
的方程;
(2)若圓的半徑為
,圓心在直線
上,且與圓
外切,求圓
的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com