日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)f(x)=lnx-ax,a∈R.
          (1)當(dāng)x=1時(shí),函數(shù)f(x)取得極值,求a的值;
          (2)當(dāng)a>0時(shí),求函數(shù)f(x)在區(qū)間[1,2]的最大值;
          (3)當(dāng)a=-1時(shí),關(guān)于x的方程2mf(x)=x2(m>0)有唯一實(shí)數(shù)解,求實(shí)數(shù)m的值.
          分析:(1)先求函數(shù)的定義域,然后求出導(dǎo)函數(shù),根據(jù)f(x)在x=1處取得極值,則f'(1)=0,求出a的值,然后驗(yàn)證即可;
          (2)先求出a的范圍,然后利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,①當(dāng)0<
          1
          a
          ≤1,即a≥1時(shí),②當(dāng)1<
          1
          a
          <2,③當(dāng)
          1
          a
          ≥2,分類討論后,研究函數(shù)的單調(diào)性,從而求出函數(shù)f(x)在區(qū)間[1,2]的最大值;
          (3)研究函數(shù)是單調(diào)性得到函數(shù)的極值點(diǎn),根據(jù)函數(shù)圖象的變化趨勢(shì),判斷何時(shí)方程2mf(x)=x2有唯一實(shí)數(shù)解,得到m所滿足的方程,解方程求解m.
          解答:解:(1)f(x)的定義域?yàn)椋?,+∞),所以f′(x)=
          1
          x
          -a=
          1-ax
          x
          .    …(2分)
          因?yàn)楫?dāng)x=1時(shí),函數(shù)f(x)取得極值,所以f′(1)=1-a=0,所以a=1.
          經(jīng)檢驗(yàn),a=1符合題意.(不檢驗(yàn)不扣分)      …(4分)
          (2)f′(x)=
          1
          x
          -a=
          1-ax
          x
          ,x>0.
          令f′(x)=0得x=
          1
          a
          .因?yàn)閤∈(0,
          1
          a
          )時(shí),f′(x)>0,x∈(
          1
          a
          ,+∞)時(shí),f′(x)<0,
          所以f(x)在(0,
          1
          a
          )遞增,在(
          1
          a
          ,+∞)遞減,…(5分)
          ①當(dāng)0<
          1
          a
          ≤1,即a≥1時(shí),f(x)在(1,2)上遞減,所以x=1時(shí),f(x)取最大值f(1)=-a;
          ②當(dāng)1<
          1
          a
          <2,即
          1
          2
          <a<1時(shí),f(x)在(1,
          1
          a
          )上遞增,在( 
          1
          a
          ,2)上遞減,
          所以x=
          1
          a
          時(shí),f(x)取最大值f(
          1
          a
          )=-lna-1;
          ③當(dāng)
          1
          a
          ≥2,即0<a≤
          1
          2
          時(shí),f(x)在(1,2)上遞增,所以x=2時(shí),f(x)取最大值f(2)=ln2-2a.
          綜上,①當(dāng)0<a≤
          1
          2
          時(shí),f(x)最大值為ln2-2a;②當(dāng)
          1
          2
          <a<1時(shí),f(x)最大值為-lna-1;
          ③當(dāng)a≥1時(shí),f(x)最大值為-a.     …(8分)
          (每種情形1分)
          (3)因?yàn)榉匠?mf(x)=x2有唯一實(shí)數(shù)解,
          所以x2-2mlnx-2mx=0有唯一實(shí)數(shù)解,
          設(shè)g(x)=x2-2mlnx-2mx,
          則g′(x)=
          2x2-2mx-2m
          x
          ,令g′(x)=0,x2-mx-m=0.
          因?yàn)閙>0,x>0,所以x1=
          m-
          m2+4m
          2
          <0(舍去),x2=
          m+
          m2+4m
          2

          當(dāng)x∈(0,x2)時(shí),g′(x)<0,g(x)在(0,x2)上單調(diào)遞減,
          當(dāng)x∈(x2,+∞)時(shí),g′(x)>0,g(x)在(x2,+∞)單調(diào)遞增,
          當(dāng)x=x2時(shí),g(x)取最小值g(x2).                …(10分)
          g(x2)=0
          g′(x2)=0

          x
          2
          2
          -2mlnx2-2mx2=0
          x
          2
          2
          -mx2-m=0

          所以2mlnx2+mx2-m=0,因?yàn)閙>0,所以2lnx2+x2-1=0(*),
          設(shè)函數(shù)h(x)=2lnx+x-1,因?yàn)楫?dāng)x>0時(shí),h(x)是增函數(shù),所以h(x)=0至多有一解.
          因?yàn)閔(1)=0,所以方程(*)的解為x2=1,即
          m+
          m2+4m
          2
          =1,
          解得m=
          1
          2
          .                           …(12分)
          點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的極值,以及利用導(dǎo)數(shù)研究函數(shù)在閉區(qū)間上的最值,是一道綜合題,有一定的難度,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=ln(x+a)+x2
          (I)若當(dāng)x=-1時(shí),f(x)取得極值,求a的值,并討論f(x)的單調(diào)性;
          (II)若f(x)存在極值,求a的取值范圍,并證明所有極值之和大于ln
          e2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (Ⅰ)設(shè)函數(shù)f(x)=ln(1+x)-
          2x
          x+2
          ,證明:當(dāng)x>0時(shí),f(x)>0;
          (Ⅱ)從編號(hào)1到100的100張卡片中每次隨機(jī)抽取一張,然后放回,用這種方式連續(xù)抽取20次,設(shè)抽得的20個(gè)號(hào)碼互不相同的概率為P.證明:P<(
          9
          10
          )
          19
          1
          e2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•楊浦區(qū)一模)設(shè)函數(shù)f(x)=ln(x2-x-6)的定義域?yàn)榧螦,集合B={x|
          5x+1
          >1}.請(qǐng)你寫出一個(gè)一元二次不等式,使它的解集為A∩B,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=ln(x+a)+x2(a>
          2
          )

          (1)若a=
          3
          2
          ,解關(guān)于x不等式f(e
          x
          -
          3
          2
          )<ln2+
          1
          4

          (2)證明:關(guān)于x的方程2x2+2ax+1=0有兩相異解,且f(m)和f(n)分別是函數(shù)f(x)的極小值和極大值(m,n為該方程兩根,且m>n).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=ln(x+a)+2x2
          (1)若當(dāng)x=-1時(shí),f(x)取得極值,求a的值;
          (2)在(1)的條件下,方程ln(x+a)+2x2-m=0恰好有三個(gè)零點(diǎn),求m的取值范圍;
          (3)當(dāng)0<a<1時(shí),解不等式f(2x-1)<lna.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案