【題目】如圖,在多面體中,四邊形
為矩形,
,
均為等邊三角形,
,
.
(1)過作截面與線段
交于點(diǎn)
,使得
平面
,試確定點(diǎn)
的位置,并予以證明;
(2)在(1)的條件下,求直線與平面
所成角的正弦值.
【答案】(1)為
的中點(diǎn),證明見解析;(2)
【解析】
(1)連結(jié)AC交BD于M,連結(jié)MN,證明,根據(jù)線面平行判定定理即可得證;
(2)過F作平面ABCD,垂足為O,過O作x軸
,作y軸
于P,則P為BC的中點(diǎn),以O為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,求出平面ABF的法向量,利用空間向量的數(shù)量積求解直線BN與平面ABF所成角的正弦值即可.
(1)當(dāng)N為CF的中點(diǎn)時(shí),平面
,
證明:連結(jié)AC交BD于M,連結(jié)MN.
∵四邊形ABCD是矩形,
∴M是AC的中點(diǎn),
∵N是CF的中點(diǎn),∴,
又平面BDN,
平面BDN,
∴平面
.
(2)過F作平面ABCD,垂足為O,過O作x軸
,作y軸
于P,則P為BC的中點(diǎn),以O為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,
設(shè),則
,
,
∵,∴
,∴
,
∴,
,
,
,
.
∴,
,
,
設(shè)平面ABF的法向量為,
則,∴
,
令,得
,
∴,
∴直線BN與平面ABF所成角的正弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點(diǎn)
處的切線方程是
,求函數(shù)
在
上的值域;
(2)當(dāng)時(shí),記函數(shù)
,若函數(shù)
有三個(gè)零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸的極坐標(biāo)系中,曲線
的極坐標(biāo)方程為
(
且
).
(I)求直線的極坐標(biāo)方程及曲線
的直角坐標(biāo)方程;
(Ⅱ)已知是直線
上的一點(diǎn),
是曲線
上的一點(diǎn),
,
,若
的最大值為2,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點(diǎn).
(1)求證:AE⊥平面PCD;
(2)求PB和平面PAD所成的角的大小;
(3)求二面角A-PD-C的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,
平面
,
是正三角形,
與
的交點(diǎn)
恰好是
中點(diǎn),又
,
.
(1)求證:;
(2)設(shè)為
的中點(diǎn),點(diǎn)
在線段
上,若直線
平面
,求
的長;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為的正方體
中,
為
的中點(diǎn),
為
上任意一點(diǎn),
,
為
上任意兩點(diǎn),且
的長為定值,則下面的四個(gè)值中不為定值的是( )
A. 點(diǎn)到平面
的距離B. 三棱錐
的體積
C. 直線與平面
所成的角D. 二面角
的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中中,曲線
的參數(shù)方程為
(
為參數(shù),
).以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,已知直線
的極坐標(biāo)方程為
.
(1)求曲線的普通方程和直線
的直角坐標(biāo)方程;
(2)設(shè)是曲線
上的一個(gè)動(dòng)點(diǎn),若點(diǎn)
到直線
的距離的最大值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠共有名工人,已知這
名工人去年完成的產(chǎn)品數(shù)都在區(qū)間
(單位:萬件)內(nèi),其中每年完成
萬件及以上的工人為優(yōu)秀員工,現(xiàn)將其分成
組,第
組、第
組、第
組、第
組、第
組對應(yīng)的區(qū)間分別為
,
,
,
,
,并繪制出如圖所示的頻率分布直方圖.
(1)求的值,并求去年優(yōu)秀員工人數(shù);
(2)選取合適的抽樣方法從這名工人中抽取容量為
的樣本,求這
組分別應(yīng)抽取的人數(shù);
(3)現(xiàn)從(2)中人的樣本中的優(yōu)秀員工中隨機(jī)選取
名傳授經(jīng)驗(yàn),求選取的
名工人在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為
,
,
為橢圓上不與左右頂點(diǎn)重合的任意一點(diǎn),
,
分別為
的內(nèi)心、重心,當(dāng)
軸時(shí),橢圓的離心率為( )
A. B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com