日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足2bcosA=ccosA+acosC.
          (1)求角A的大小;
          (2)若a=
          3
          ,S△ABC=
          3
          3
          4
          ,試判斷△ABC的形狀,并說明理由.
          分析:(1)已知等式利用正弦定理化簡,根據(jù)sinB不為0求出cosA的值,由A的范圍即可確定出A的度數(shù);
          (2)利用三角形的面積公式列出關系式,將sinA與已知面積代入求出bc的值,再由余弦定理列出關系式,將cosA,a的值代入求出b2+c2的值,聯(lián)立求出b與c的值,即可確定出三角形的形狀.
          解答:解:(1)由2bcosA=ccosA+acosC及正弦定理,得2sinBcosA=sin(A+C)=sinB,即sinB(2cosA-1)=0,
          ∵0<B<π,∴sinB≠0,
          ∴cosA=
          1
          2

          ∵0<A<π,
          ∴A=
          π
          3
          ;
          (2)∵S△ABC=
          1
          2
          bcsinA=
          3
          3
          4
          ,即
          1
          2
          bcsin
          π
          3
          =
          3
          3
          4
          ,
          ∴bc=3,①
          ∵a2=b2+c2-2bccosA,a=
          3
          ,A=
          π
          3
          ,
          ∴b2+c2=6,②
          由①②得b=c=
          3

          則△ABC為等邊三角形.
          點評:此題考查了三角形形狀的判斷,涉及的知識有:正弦、余弦定理,三角形的面積公式,以及特殊角的三角函數(shù)值,熟練掌握定理及公式是解本題的關鍵.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
          3
          bc
          ,且b=
          3
          a
          ,則下列關系一定不成立的是( 。
          A、a=c
          B、b=c
          C、2a=c
          D、a2+b2=c2

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
          1114

          (1)求cosC的值;
          (2)若bcosC+acosB=5,求△ABC的面積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
          3
          acosB

          (1)求角B的大小;
          (2)若a=4,c=3,D為BC的中點,求△ABC的面積及AD的長度.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
          b
          a
          =
          sinB
          cosA

          (1)求∠A的值;
          (2)求用角B表示
          2
          sinB-cosC
          ,并求它的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
          5
          ,b=3,sinC=2sinA
          ,則sinA=
           

          查看答案和解析>>

          同步練習冊答案