【題目】現(xiàn)有一副斜邊長(zhǎng)為10的直角三角板,將它們斜邊重合,若將其中一個(gè)三角板沿斜邊折起形成三棱錐
,如圖所示,已知
,
,則三棱錐
的外接球的表面積為______;該三棱錐體積的最大值為_______.
【答案】
【解析】
(1)容易知中點(diǎn)為外接球球心,則
為外接球直徑,從而求得半徑,利用表面積公式,即可求得結(jié)果;
(2)體積最大時(shí),即平面平面
,求得點(diǎn)
到平面
距離,利用棱錐體積公式即可求得結(jié)果.
(1)因?yàn)?/span>,
,
且,
,
所以,
,
.
因?yàn)?/span>,
所以三棱錐的外接球的直徑為
,
所以球的半徑,
故球的表面積為.
(2)當(dāng)點(diǎn)到平面
距離最大時(shí)三棱錐
的體積最大,
此時(shí)平面平面
,
過(guò)點(diǎn)作
,
因?yàn)?/span>平面
,平面
平面
,且交于
,
故可得平面
,
則點(diǎn)到平面
的距離為
,
又在中,
,
所以.
故答案為:;
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,
平面
,
,
,
,點(diǎn)
是
與
的交點(diǎn).
(1)求二面角的余弦值;
(2)若點(diǎn)在線段
上且
平面
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)拋物線的焦點(diǎn)F任作兩條互相垂直的直線
,
,分別與拋物線E交于A,B兩點(diǎn)和C,D兩點(diǎn),則
的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)判斷函數(shù)在點(diǎn)
處的切線是否過(guò)定點(diǎn)?若過(guò),求出該點(diǎn)的坐標(biāo);若不過(guò),請(qǐng)說(shuō)明理由.
(2)若有最大值
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),曲線C的參數(shù)方程為
(θ為參數(shù)).
(1)當(dāng)時(shí),求直線l與曲線C的普通方程;
(2)若直線l與曲線C交于A,B兩點(diǎn),直線l傾斜角的范圍為(0,],且P點(diǎn)的直角坐標(biāo)為(0,2),求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求在點(diǎn)
處的切線方程;
(2)(i)若恒成立,求
的取值范圍;
(i i)當(dāng)時(shí),證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為F,直線l與C交于M,N兩點(diǎn).
(1)若l過(guò)點(diǎn)F,點(diǎn)M,N到直線y=2的距離分別為d1,d2,且,求l的方程;
(2)若點(diǎn)M的坐標(biāo)為(0,1),直線m過(guò)點(diǎn)M交C于另一點(diǎn)N′,當(dāng)直線l與m的斜率之和為2時(shí),證明:直線NN′過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),共享單車在我國(guó)各城市迅猛發(fā)展,為人們的出行提供了便利,但也給城市的交通管理帶來(lái)了一些困難,為掌握共享單車在省的發(fā)展情況,某調(diào)查機(jī)構(gòu)從該省抽取了5個(gè)城市,并統(tǒng)計(jì)了共享單車的
指標(biāo)
和
指標(biāo)
,數(shù)據(jù)如下表所示:
城市1 | 城市2 | 城市3 | 城市4 | 城市5 | |
| 2 | 4 | 5 | 6 | 8 |
| 3 | 4 | 4 | 4 | 5 |
(1)試求與
間的相關(guān)系數(shù)
,并說(shuō)明
與
是否具有較強(qiáng)的線性相關(guān)關(guān)系(若
,則認(rèn)為
與
具有較強(qiáng)的線性相關(guān)關(guān)系,否則認(rèn)為沒(méi)有較強(qiáng)的線性相關(guān)關(guān)系).
(2)建立關(guān)于
的回歸方程,并預(yù)測(cè)當(dāng)
指標(biāo)為7時(shí),
指標(biāo)的估計(jì)值.
(3)若某城市的共享單車指標(biāo)
在區(qū)間
的右側(cè),則認(rèn)為該城市共享單車數(shù)量過(guò)多,對(duì)城市的交通管理有較大的影響交通管理部門將進(jìn)行治理,直至
指標(biāo)
在區(qū)間
內(nèi)現(xiàn)已知
省某城市共享單車的
指標(biāo)為13,則該城市的交通管理部門是否需要進(jìn)行治理?試說(shuō)明理由.
參考公式:回歸直線中斜率和截距的最小二乘估計(jì)分別為
,,
相關(guān)系數(shù)
參考數(shù)據(jù):,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在直角梯形中,
,
、
分別是
、
上的點(diǎn),
,且
(如圖①).將四邊形
沿
折起,連接
、
、
(如圖②).在折起的過(guò)程中,則下列表述:
①平面
;
②四點(diǎn)、
、
、
可能共面;
③若,則平面
平面
;
④平面與平面
可能垂直.其中正確的是__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com