日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設等差數(shù)列{an}的前n項和為Sn,公比是正數(shù)的等比數(shù)列{bn}的前n項和為Tn,已知a1=1,b1=3,a2+b2=8,T3-S3=15
          (Ⅰ)求{an},{bn}的通項公式;
          (Ⅱ)若數(shù)列{cn}滿足對任意n∈N*都成立;求證:數(shù)列{cn}是等比數(shù)列.
          【答案】分析:(Ⅰ)設數(shù)列{an}的公差為d,數(shù)列{bn}的公比為q(q>0),列關于d與q的方程組求得d與q,即可求得{an},{bn}的通項公式;
          (Ⅱ)由cn+2cn-1+…+(n-1)c2+nc1=2n+1-n-2向下遞推一項可得cn-1+2cn-2+…+(n-2)c2+(n-1)c1=2n-(n-1)-2(n≥2),兩式相減即可求得cn=2n-1(n≥3),再驗證n=1,2時的情況即可,符合則合,不符合則分段寫.
          解答:(Ⅰ)設數(shù)列{an}的公差為d,數(shù)列{bn}的公比為q(q>0)
          由題意得
           解得,
          ∴an=n,bn=3×2n-1;
          (Ⅱ)由cn+2cn-1+…+(n-1)c2+nc1=2n+1-n-2
          知cn-1+2cn-2+…+(n-2)c2+(n-1)c1=2n-(n-1)-2(n≥2)
          兩式相減:cn+cn-1+…+c2+c1=2n-1(n≥2)
          ∴cn-1+…+c2+c1=2n-1-1(n≥3)
          ∴cn=2n-1(n≥3)
          當n=1,2時,c1=1,c2=2,適合上式.
          ∴cn=2n-1(n∈N*).
          即{cn}是等比數(shù)列
          點評:本題考查等差數(shù)列與等比數(shù)列的通項公式,考查數(shù)列的求和,突出考查方程組思想、轉(zhuǎn)化思想與分類討論思想的綜合運用,屬于中檔題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          設等差數(shù)列{an}的前n項和為Sn.若S2k=72,且ak+1=18-ak,則正整數(shù)k=
           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•山東)設等差數(shù)列{an}的前n項和為Sn,且S4=4S2,a2n=2an+1.
          (1)求數(shù)列{an}的通項公式;
          (2)設數(shù)列{bn}的前n項和為TnTn+
          an+12n
          (λ為常數(shù)).令cn=b2n(n∈N)求數(shù)列{cn}的前n項和Rn

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設等差數(shù)列{an}的前n項之和為Sn滿足S10-S5=20,那么a8=
          4
          4

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設等差數(shù)列{an}的前n項和為Sn,已知(a4-1)3+2012(a4-1)=1,(a2009-1)3+2012(a2009-1)=-1,則下列結(jié)論中正確的是( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設等差數(shù)列{an}的前n項和為Sn,若S9=81,S6=36,則S3=( 。

          查看答案和解析>>

          同步練習冊答案