日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,P1(x1,y1),P2(x2,y2),…,Pn(xn,yn)(0<y1<y2<…<yn,n∈N*)是曲線C:y2=3x(y≥0)上的n個(gè)點(diǎn),點(diǎn)Ai(ai,0)(i=1,2,3,…,n)在x軸的正半軸上,△Ai-1AiPi是正三角形(A0是坐標(biāo)原點(diǎn)),
          (1)求a1,a2,a3;
          (2)求出點(diǎn)An(an,0)(n∈N*)的橫坐標(biāo)an關(guān)于n的表達(dá)式;
          (3)設(shè),若對(duì)任意正整數(shù)n,當(dāng)m∈[-1,1]時(shí),不等式t2-mt+>bn恒成立,求實(shí)數(shù)t的取值范圍。

          解:(1)a1=2,a2=6,a3=12;
          (2)依題意An(an,0),,
          ,
          在正三角形中,有,

          ,
          ,①
          同理可得,②
          ②-①并變形得,

          ,
          ,
          ∴數(shù)列{an+1-an}是以a2-a1=4為首項(xiàng),公差為2的等差數(shù)列,


          ,

          (3),
          ,


          ,
          ∵當(dāng)n∈N*時(shí),上式恒為負(fù)值,
          ∴當(dāng)n∈N*時(shí),bn+1<bn
          ∴數(shù)列{bn}是遞減數(shù)列,
          ∴bn的最大值為,
          若對(duì)任意正整數(shù)n,當(dāng)m∈[-1,1]時(shí),不等式恒成立,
          則不等式在m∈[-1,1]時(shí)恒成立,
          即不等式t2-2mt>0在m∈[-1,1]時(shí)恒成立,
          設(shè)f(m)=t2-2mt,則f(1)>0且f(-1)>0,
          ,解之,得t<-2或t>2,
          即t的取值范圍是(-∞,-2)∪(2,+∞)。

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,P1(x1,y1),P2(x2,y2),…,Pn(xn,yn)(0<y1<y2<…<yn)是曲線C:y2=3x(y≥0)上的n個(gè)點(diǎn),點(diǎn)Ai(ai,0)(i=1,2,3,…,n)在x軸的正半軸上,且△Ai-1AiPi是正三角形(A0是坐標(biāo)原點(diǎn)).
          (Ⅰ)求出a1,a2,a3,并猜想an關(guān)于n的表達(dá)式(不需證明);
          (Ⅱ)設(shè)bn=
          1
          an+1
          +
          1
          an+2
          +
          1
          an+3
          +…+
          1
          a2n
          ,若對(duì)任意的正整數(shù)n,當(dāng)m∈[-1,1]時(shí),不等式t2-2mt+
          1
          6
          bn
          恒成立,求實(shí)數(shù)t的取值范圍.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,P1(x1,y1)、P2(x2,y2)、…、Pn(xn,yn)(0<y1<y2<…<yn) 是曲線C:y2=3x(y≥0)上的n個(gè)點(diǎn),點(diǎn)Ai(ai,0)(i=1,2,3,…n)在x軸的正半軸上,且△Ai-1AiPi是正三角形(A0是坐標(biāo)原點(diǎn)).
          (1)求a1、a2、a3的值;
          (2)求出點(diǎn)An(an,0)(n∈N+)的橫坐標(biāo)an和點(diǎn)An-1(an-1,0)(n>0,n∈N+)橫坐標(biāo)an-1的關(guān)系式;
          (3)根據(jù)(1)的結(jié)論猜想an關(guān)于n的表達(dá)式,并用數(shù)學(xué)歸納法證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•閘北區(qū)二模)如圖,P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…是曲線C:y2=
          1
          2
          x(y≥0)
          上的點(diǎn),A1(a1,0),A2(a2,0),…,An(an,0),…是x軸正半軸上的點(diǎn),且△A0A1P1,△A1A2P2,…,△An-1AnPn,…均為斜邊在x軸上的等腰直角三角形(A0為坐標(biāo)原點(diǎn)).
          (1)寫(xiě)出an-1、an和xn之間的等量關(guān)系,以及an-1、an和yn之間的等量關(guān)系;
          (2)猜測(cè)并證明數(shù)列{an}的通項(xiàng)公式;
          (3)設(shè)bn=
          1
          an+1
          +
          1
          an+2
          +
          1
          an+3
          +…+
          1
          a2n
          ,集合B={b1,b2,b3,…,bn,…},A={x|x2-2ax+a2-1<0,x∈R},若A∩B=∅,求實(shí)常數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•閘北區(qū)二模)如圖,P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…是曲線C:y2=
          1
          2
          x(y≥0)
          上的點(diǎn),A1(a1,0),A2(a2,0),…,An(an,0),…是x軸正半軸上的點(diǎn),且△A0A1P1,△A1A2P2,…,△An-1AnPn,…均為斜邊在x軸上的等腰直角三角形(A0為坐標(biāo)原點(diǎn)).
          (1)寫(xiě)出an-1、an和xn之間的等量關(guān)系,以及an-1、an和yn之間的等量關(guān)系;
          (2)求證:an=
          n(n+1)
          2
          (n∈N*);
          (3)設(shè)bn=
          1
          an+1
          +
          1
          an+2
          +
          1
          an+3
          +…+
          1
          a2n
          ,對(duì)所有n∈N*,bn<log8t恒成立,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案