【題目】已知函數(shù)
(1)求函數(shù)在區(qū)間
上的值域
(2)把函數(shù)圖象所有點的上橫坐標縮短為原來的
倍,再把所得的圖象向左平移
個單位長度
,再把所得的圖象向下平移1個單位長度,得到函數(shù)
, 若函數(shù)
關(guān)于點
對稱
(i)求函數(shù)的解析式;
(ii)求函數(shù)單調(diào)遞增區(qū)間及對稱軸方程.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,曲線C1是以原點O為中心,F(xiàn)1,F(xiàn)2為焦點的橢圓的一部分.曲線C2是以O(shè)為頂點,F(xiàn)2為焦點的拋物線的一部分,A是曲線C1和C2的交點且∠AF2F1為鈍角,若|AF1|=,|AF2|=
.
(1)求曲線C1和C2的方程;
(2)設(shè)點C是C2上一點,若|CF1|=|CF2|,求△CF1F2的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)橢圓的方程為
(
),點
為坐標原點,點
,
的坐標分別為
,
,點
在線段
上,滿足
,直線
的斜率為
.
(1)求橢圓的方程;
(2)若斜率為的直線
交橢圓
于
,
兩點,交
軸于點
(
),問是否存在實數(shù)
使得以
為直徑的圓恒過點
?若存在,求
的值,若不存在,說出理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】北京時間3月15日下午,谷歌圍棋人工智能與韓國棋手李世石進行最后一輪較量,
獲得本場比賽勝利,最終人機大戰(zhàn)總比分定格
.人機大戰(zhàn)也引發(fā)全民對圍棋的關(guān)注,某學校社團為調(diào)查學生學習圍棋的情況,隨機抽取了100名學生進行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學生日均學習圍棋時間的頻率分布直方圖(如圖所示),將日均學習圍棋時間不低于40分鐘的學生稱為“圍棋迷”.
(Ⅰ)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有的把握認為“圍棋迷”與性別有關(guān)?
非圍棋迷 | 圍棋迷 | 合計 | |
男 | |||
女 | 10 | 55 | |
合計 |
(Ⅱ)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量學生中,采用隨機抽樣方法每次抽取1名學生,抽取3次,記被抽取的3名淡定生中的“圍棋迷”人數(shù)為。若每次抽取的結(jié)果是相互獨立的,求
的平均值和方差.
附: ,其中
.
0.05 | 0.01 | |
6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠今年前三個月生產(chǎn)某種產(chǎn)品的數(shù)量統(tǒng)計表如下:
為了估測以后每個月的產(chǎn)量,以這三個月的產(chǎn)量為依據(jù),用一個函數(shù)模擬產(chǎn)品的月產(chǎn)量與月份
的關(guān)系,模擬函數(shù)可選擇二次函數(shù)
(
為常數(shù)且
),或函數(shù)
(
為常數(shù)).已知4月份的產(chǎn)量為1.37萬件,請問用以上哪個函數(shù)作為模擬函數(shù)較好,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在極坐標系中,曲線的極坐標方程為,以極點為原點,極軸為
軸的非負半軸建立平面直角坐標系,直線
的參數(shù)方程為
(
為參數(shù),
).
(1)求曲線的直角坐標方程和直線
的普通方程;
(2)若曲線上的動點
到直線
的最大距離為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C過點M(0,-2)、N(3,1),且圓心C在直線x+2y+1=0上.
(1)求圓C的方程;
(2)設(shè)直線ax-y+1=0與圓C交于A,B兩點,是否存在實數(shù)a,使得過點P(2,0)的直線l垂直平分弦AB?若存在,求出實數(shù)a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】根據(jù)某水文觀測點的歷史統(tǒng)計數(shù)據(jù),得到某河流水位(單位:米)的頻率分布直方圖如下:將河流水位在以上6段的頻率作為相應(yīng)段的概率,并假設(shè)每年河流水位互不影響.
(Ⅰ)求未來三年,至多有1年河流水位的概率(結(jié)果用分數(shù)表示);
(Ⅱ)該河流對沿河企業(yè)影響如下:當
時,不會造成影響;當
時,損失10000元;當
時,損失60000元,為減少損失,現(xiàn)有三種應(yīng)對方案:
方案一:防御35米的最高水位,需要工程費用3800元;
方案二:防御不超過31米的水位,需要工程費用2000元;
方案三:不采用措施:試比較哪種方案較好,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知射手甲射擊一次,命中9環(huán)(含9環(huán))以上的概率為0.56,命中8環(huán)的概率為0.22,命中7環(huán)的概率為0.12.
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)求甲射擊一次,命中不足8環(huán)的概率;
(2)求甲射擊一次,至少命中7環(huán)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com