日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設函數(shù).

          (Ⅰ) 求曲線在點處的切線方程;

          (Ⅱ) 討論函數(shù)的單調(diào)性;

          (Ⅲ) 設,當時,若對任意的,存在,使得,求實數(shù)的取值范圍.

          【答案】(Ⅰ); (Ⅱ)見解析; (Ⅲ).

          【解析】

          ()由題意可得,據(jù)此確定切線的斜率,結(jié)合切點坐標確定切線方程即可;

          ()可得,據(jù)此分類討論確定函數(shù)的單調(diào)性即可;

          ()由題意可得,則原問題等價于,據(jù)此求解實數(shù)b的取值范圍即可.

          (),

          因為,,

          所以曲線在點處的切線方程為:.

          (),所以,

          ,

          此時上單調(diào)遞減,上單調(diào)遞增;

          ,,

          此時上單調(diào)遞增,上單調(diào)遞減.

          (),上單調(diào)遞減,上單調(diào)遞增,

          所以對任意,,

          又已知存在,

          使,所以,

          即存在,使,

          即因為當,

          所以,即實數(shù)取值范圍是.

          所以實數(shù)的取值范圍是.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】某有機水果種植基地試驗種植的某水果在售賣前要成箱包裝,每箱80個,每一箱水果在交付顧客之前要按約定標準對水果作檢測,如檢測出不合格品,則更換為合格品.檢測時,先從這一箱水果中任取10個作檢測,再根據(jù)檢測結(jié)果決定是否對余下的所有水果作檢測.設每個水果為不合格品的概率都為,且各個水果是否為不合格品相互獨立.

          (Ⅰ)記10個水果中恰有2個不合格品的概率為,求取最大值時p的值;

          (Ⅱ)現(xiàn)對一箱水果檢驗了10個,結(jié)果恰有2個不合格,以(Ⅰ)中確定的作為p的值.已知每個水果的檢測費用為1.5元,若有不合格水果進入顧客手中,則種植基地要對每個不合格水果支付a元的賠償費用

          (ⅰ)若不對該箱余下的水果作檢驗,這一箱水果的檢驗費用與賠償費用的和記為X,求EX;

          (ⅱ)以檢驗費用與賠償費用和的期望值為決策依據(jù),當種植基地要對每個不合格水果支付的賠償費用至少為多少元時,將促使種植基地對這箱余下的所有水果作檢驗?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù),,其中是自然對數(shù)的底數(shù).

          ,使得不等式成立,試求實數(shù)的取值范圍;

          )若,求證:

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知斜率存在且不為0的直線過點,設直線與橢圓交于兩點,橢圓的左頂點為.

          1)若的面積為,求直線的方程;

          2)若直線分別交直線于點,且,記直線的斜率分別為.探究:是否為定值?若是,求出該定值;若不是,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】(選修4-4:坐標系與參數(shù)方程)

          在直角坐標系中,半圓C的參數(shù)方程為為參數(shù),),以O為極點,x軸的非負半軸為極軸建立極坐標系.

          )求C的極坐標方程;

          )直線的極坐標方程是,射線OM與半圓C的交點為OP,與直線的交點為Q,求線段PQ的長.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】為配合“2019雙十二促銷活動,某公司的四個商品派送點如圖環(huán)形分布,并且公司給四個派送點準備某種商品各50.根據(jù)平臺數(shù)據(jù)中心統(tǒng)計發(fā)現(xiàn),需要將發(fā)送給四個派送點的商品數(shù)調(diào)整為40,4554,61,但調(diào)整只能在相鄰派送點進行,每次調(diào)動可以調(diào)整1件商品.為完成調(diào)整,則(

          A.最少需要16次調(diào)動,有2種可行方案

          B.最少需要15次調(diào)動,有1種可行方案

          C.最少需要16次調(diào)動,有1種可行方案

          D.最少需要15次調(diào)動,有2種可行方案

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某班主任對全班50名學生學習積極性和對待班級工作的態(tài)度進行了調(diào)查,統(tǒng)計數(shù)據(jù)如下表所示:

          積極參加

          班級工作

          不太主動參加

          班級工作

          合計

          學習積極性高

          18

          7

          25

          學習積極性一般

          6

          19

          25

          合計

          24

          26

          50

          1)如果隨機抽查這個班的一名學生,那么抽到積極參加班級工作的學生的概率是多少?抽到不太主動參加班級工作且學習積極性一般的學生的概率是多少?

          2)試運用獨立性檢驗的思想方法能否有99.9%的把握認為學生的學習積極性與對待班級工作的態(tài)度有關系?并說明理由.(參考下表)

          P(K2

          k)

          0.50

          0.40

          0.25

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          k

          0.455

          0.708

          1.323

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          (參考公式:,其中)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)的最大值為.

          (Ⅰ)求實數(shù)的值;

          (Ⅱ)當時,討論函數(shù)的單調(diào)性;

          (Ⅲ)當時,令,是否存在區(qū)間.使得函數(shù)在區(qū)間上的值域為若存在,求實數(shù)的取值范圍;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖所示,在三棱錐中,底面,,的中點.

          (1)求證:;

          (2)若二面角的大小為,求三棱錐的體積.

          查看答案和解析>>

          同步練習冊答案