日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)對(duì)任意,都有,且時(shí),.

          (1)求證是奇函數(shù);

          (2)求上的最大值和最小值.

          【答案】(1) 證明見解析,(2)6,-6.

          【解析】

          (1)根據(jù)任意,都有,利用賦值法構(gòu)造奇偶性判斷的定義即可證明;(2)根據(jù)已知利用賦值法構(gòu)造單調(diào)性的定義判斷后,即可求上的最大值和最小值.

          (1)證明 令xy=0,知f(0)=0;再令y=-x,f(0)=f(x)+f(-x)=0,所以f(x)為奇函數(shù).

          (2)解 任取x1x2,則x2x1>0,所以f(x2x1)=f[x2+(-x1)]=f(x2)+f(-x1)=f(x2)-f(x1)<0.

          所以f(x)為減函數(shù).

          f(3)=f(2+1)=f(2)+f(1)=3f(1)=-6,f(-3)=-f(3)=6.

          所以f(x)maxf(-3)=6,f(x)minf(3)=-6.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,三棱柱中,側(cè)面的菱形, .

          (1)證明:平面平面.

          (2)若,直線與平面所成的角為,求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知數(shù)列的前項(xiàng)和為,且滿足,則下列說(shuō)法正確的是( )

          A. 數(shù)列的前項(xiàng)和為 B. 數(shù)列的通項(xiàng)公式為

          C. 數(shù)列為遞增數(shù)列 D. 數(shù)列是遞增數(shù)列

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】將函數(shù)的圖象,向右平移個(gè)單位長(zhǎng)度,再把縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,得到函數(shù),則下列說(shuō)法正確的是( )

          A. 函數(shù)的最小正周期為 B. 函數(shù)在區(qū)間上單調(diào)遞增

          C. 函數(shù)在區(qū)間上的最小值為 D. 是函數(shù)的一條對(duì)稱軸

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          已知曲線的參數(shù)方程為為參數(shù)).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.

          (1)求的普通方程和的直角坐標(biāo)方程;

          (2)若過(guò)點(diǎn)的直線交于,兩點(diǎn),與交于,兩點(diǎn),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下列說(shuō)法正確的有( )

          (1)很小的實(shí)數(shù)可以構(gòu)成集合;

          (2)集合與集合是同一個(gè)集合;

          (3) 這些數(shù)組成的集合有5個(gè)元素;

          (4)任何集合至少有兩個(gè)子集.

          A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)

          1)求函數(shù)的最小值;

          2)當(dāng)時(shí),記函數(shù)的所有單調(diào)遞增區(qū)間的長(zhǎng)度為,所有單調(diào)遞減區(qū)間的長(zhǎng)度為,證明:.(注:區(qū)間長(zhǎng)度指該區(qū)間在軸上所占位置的長(zhǎng)度,與區(qū)間的開閉無(wú)關(guān).)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)的定義域?yàn)?/span>,對(duì)于任意的,都有且當(dāng)時(shí),,若.

          (1)求證:為奇函數(shù);

          (2)求證: 上的減函數(shù);

          (3)求函數(shù)在區(qū)間[-2,4]上的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,直線的普通方程為,曲線的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

          (Ⅰ)求直線的參數(shù)方程和極坐標(biāo)方程;

          (Ⅱ)設(shè)直線與曲線相交于兩點(diǎn),求的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案