日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 函數(shù)y=f(x)定義在區(qū)間[0,2]上且單調(diào)遞減,則使得f(1-m)<f(m)成立的實(shí)數(shù)m的取值范圍為(  )
          分析:根據(jù)已知中函數(shù)y=f(x)在區(qū)間[0,2]上單調(diào)遞減,且f(1-m)<f(m)可得不等式組0≤1-m<m≤2,解不等式組,可得答案
          解答:解:∵函數(shù)y=f(x)在區(qū)間[0,2]上單調(diào)遞減,
          若f(1-m)<f(m)
          則0≤1-m<m≤2
          解得0≤m<
          1
          2

          故選B
          點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)單調(diào)性的性質(zhì),其中根據(jù)已知條件,將問(wèn)題轉(zhuǎn)化為求不等式組0≤1-m<m≤2的解集,是解答的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)y=f(x)定義在R上,對(duì)于任意實(shí)數(shù)m,n,恒有f(m+n)=f(m)•f(n),且當(dāng)x>0時(shí),0<f(x)<1
          (1)求證:f(0)=1且當(dāng)x<0時(shí),f(x)>1
          (2)求證:f(x)在R上是減函數(shù);
          (3)設(shè)集合A=(x,y)|f(-x2+6x-1)•f(y)=1,B=(x,y)|y=a,
          且A∩B=∅,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          7、設(shè)函數(shù)y=f(x)定義在實(shí)數(shù)集上,則函數(shù)y=f(x-1)與y=f(1-x)的圖象關(guān)于( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          函數(shù)y=f(x)定義在R上單調(diào)遞減且f(0)≠0,對(duì)任意實(shí)數(shù)m、n,恒有f(m+n)=f(m)•f(n),集合A={(x,y)|f(x2)•f(y2)>f(1)},B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B=φ,則a的取值范圍是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)y=f(x)定義在R上,對(duì)于任意實(shí)數(shù)m,n,恒有f(m+n)=f(m)•f(n)且當(dāng)x>0時(shí),0<f(x)<1
          (1)求證:f(0)=1 且當(dāng)x<0時(shí),f(x)>1
          (2)求證:f(x)在R上是減函數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          奇函數(shù)y=f(x)定義在[-1,1]上,且是減函數(shù),若f(1-a)+f(1-2a)>0,則實(shí)數(shù)a的取值范圍是
          2
          3
          <a≤1
          2
          3
          <a≤1

          查看答案和解析>>

          同步練習(xí)冊(cè)答案