日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖2-4-13,已知C點在⊙O直徑BE的延長線上,CA切⊙O于A點,∠ACB的平分線CD交AE于F點,交AB于D點.

          圖2-4-13

          (1)求∠ADF的度數(shù).

          (2)若∠ACB的度數(shù)為y度,∠B的度數(shù)為x度,那么y與x之間有怎樣的關系?試寫出你的猜測并給出證明.

          (3)若AB=AC,求AC∶BC.

          思路分析:(1)中由AC為⊙O切線可得∠B=∠EAC,由CD平分∠ACB可得∠ACD=∠DCB,根據(jù)三角形外角定理,得到∠ADF=∠AFD,建立等腰三角形,再由頂角求底角;(2)中則利用三角形內角和定理得到方程,獲得關系;(3)中求線段的比值,利用△ACE∽△ABC可得.

          解:(1)∵AC為⊙O切線,

          ∴∠B=∠EAC.

          ∵CD平分∠ACB,∴∠ACD=∠DCB.

          ∴∠B+∠DCB=∠EAC+∠ACD,即∠ADF=∠AFD.

          ∵BE為⊙O直徑,∴∠DAE=90°.

          ∴∠ADF=(180°-∠DAE)=45°.

          (2)∵∠B=∠EAC,∠B+∠BAC+∠ACB=180°,

          ∴x+90+x+y=180.∴y=90-2x.

          ∵0<∠B<∠ADC,∴0<x<45.

          ∴y與x的函數(shù)關系式是y=90-2x,其中x的取值范圍是0<x<45.

          (3)∵∠B=∠EAC,∠ACB=∠ACB,

          ∴△ACE∽△ABC.∴.

          ∵AB=AC,∴∠B=∠ACB,即x=y.

          又∵y=90-2x,∴x=90-2x,x=30.

          ∴在Rt△ABE中,=tan∠ABE=tan30°=.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網如圖所示,直線AD、CD、BC兩兩垂直,且AD與BC不在同一平面內.已知BC=3,CD=4,AB=13,點M、N分別為線段AB、AC的中點.
          (1)證明:直線BC∥平面MND;
          (2)證明:平面MND⊥平面ACD;
          (3)求三棱錐A-MND的體積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          選做題在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.
          A選修4-1:幾何證明選講
          如圖,延長⊙O的半徑OA到B,使OA=AB,DE是圓的一條切線,E是切點,過點B作DE的垂線,垂足為點C.
          求證:∠ACB=
          1
          3
          ∠OAC.
          B選修4-2:矩陣與變換
          已知矩陣A=
          .
          11
          21
          .
          ,向量
          β
          =
          1
          2
          .求向量
          a
          ,使得A2
          a
          =
          β

          C選修4-3:坐標系與參數(shù)方程
          已知橢圓C的極坐標方程為ρ2=
          a
          3cos2θ+4sin2θ
          ,焦距為2,求實數(shù)a的值.
          D選修4-4:不等式選講
          已知函數(shù)f(x)=(x-a)2+(x-b)2+(x-c)2+
          (a+b+c)2
          3
          (a,b.c為實數(shù))的最小值為m,若a-b+2c=3,求m的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2011-2012學年湖北省高三五月適應性考試(三)文科數(shù)學試卷(解析版) 題型:解答題

          (本小題滿分13分)

          已知菱形ABCD中,AB=4, (如圖1所示),將菱形ABCD沿對角線翻折,使點翻折到點的位置(如圖2所示),點E,F,M分別是AB,DC1,BC1的中點.

            

          (1)證明:BD //平面

          (2)證明:

          (3)當時,求線段AC1 的長.

           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖2-4,已知Rt△ABC中,∠B=90°,AC=13,AB=5,O是AB上的點,以O為圓心,OB為半徑作⊙O.

          (1)當OB=2.5時,⊙O交AC于點D,求CD的長.

          (2)當OB=2.4時,AC與⊙O的位置關系如何?試證明你的結論.

          圖2-4

          查看答案和解析>>

          同步練習冊答案