日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在極坐標(biāo)系中,圓的極坐標(biāo)方程為,若以極點(diǎn)為原點(diǎn),極軸所在的直線為軸建立平面直角坐標(biāo)系

          (1)求圓的參數(shù)方程;

          (2)在直角坐標(biāo)系中,點(diǎn)是圓上的動點(diǎn),試求的最大值,并求出此時點(diǎn)的直角坐標(biāo);

          (3)已知為參數(shù)),曲線為參數(shù)),若版曲線上各點(diǎn)恒坐標(biāo)壓縮為原來的倍,縱坐標(biāo)壓縮為原來的倍,得到曲線,設(shè)點(diǎn)是曲線上的一個動點(diǎn),求它到直線距離的最小值.

          【答案】(1)為參數(shù));(2)最大值為時,點(diǎn)的直角坐標(biāo)為;(3).

          【解析】試題分析:

          (1)圓的普通方程為,所以所求圓的參數(shù)方程為為參數(shù)).

          (2) 設(shè),代入

          整理可知則關(guān)于的方程必有實(shí)數(shù)根,

          所以,解得,即的最大值為11,

          的最大值為時,點(diǎn)的直角坐標(biāo)為.

          (3)點(diǎn)的坐標(biāo)是,

          當(dāng)時, 取得最小值, .

          試題解析:(1)因為,所以,

          為圓的普通方程,

          所以所求圓的參數(shù)方程為為參數(shù)).

          (2)設(shè),得代入

          整理得,則關(guān)于的方程必有實(shí)數(shù)根,

          所以,化簡得,

          解得,即的最大值為11,

          代入方程,得,解得,代入,

          的最大值為時,點(diǎn)的直角坐標(biāo)為.

          (3)的參數(shù)方程為為參數(shù)),故點(diǎn)的坐標(biāo)是

          從而點(diǎn)到直線的距離是,

          由此當(dāng)時, 取得最小值,且最小值為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線 的焦點(diǎn)為,過點(diǎn)的直線相交于、兩點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn)為

          (Ⅰ)判斷點(diǎn)是否在直線上,并給出證明;

          (Ⅱ)設(shè),求的內(nèi)切圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)

          (1)若,求曲線處的切線方程;

          (2)若當(dāng)時, ,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在三棱錐中, 是邊長為的等邊三角形, , 中點(diǎn), 中點(diǎn).

          (Ⅰ)求證:平面平面;

          (Ⅱ)求直線與平面所成角的正弦值的大;

          (Ⅲ)在棱上是否存在一點(diǎn),使得的余弦值為?若存在,指出點(diǎn)上的位置;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

          (1)當(dāng)時,討論函數(shù)的單調(diào)性;

          (2)當(dāng)時,求證:對任意的.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某單位從一所學(xué)校招收某類特殊人才,對20位已經(jīng)選拔入圍的學(xué)生進(jìn)行運(yùn)動協(xié)調(diào)能力和邏輯思維能力的測試,其測試結(jié)果如下表:

          例如表中運(yùn)動協(xié)調(diào)能力良好且邏輯思維能力一般的學(xué)生是4人,由于部分?jǐn)?shù)據(jù)丟失,只知道從這20位參加測試的學(xué)生中隨機(jī)抽取一位,抽到邏輯思維能力優(yōu)秀的學(xué)生的概率為

          (1)求、的值;

          (2)從運(yùn)動協(xié)調(diào)能力為優(yōu)秀的學(xué)生中任意抽取2位,求其中至少有一位邏輯思維能力優(yōu)秀的學(xué)生的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】交強(qiáng)險是車主必須為機(jī)動車購買的險種,若普通座以下私家車投保交強(qiáng)險第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時,實(shí)行的是費(fèi)率浮動機(jī)制,保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動情況如下表:

          某機(jī)構(gòu)為了研究某一品牌普通座以下私家車的投保情況,隨機(jī)抽取了輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:

          類型

          數(shù)量

          10

          5

          5

          20

          15

          5

          以這輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:

          (Ⅰ)按照我國《機(jī)動車交通事故責(zé)任強(qiáng)制保險條例》汽車交強(qiáng)險價格的規(guī)定, ,記為某同學(xué)家里的一輛該品牌車在第四年續(xù)保時的費(fèi)用,求的分布列與數(shù)學(xué)期望;(數(shù)學(xué)期望值保留到個位數(shù)字)

          (Ⅱ)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險保費(fèi)高于基本保費(fèi)的車輛記為事故車,假設(shè)購進(jìn)一輛事故車虧損元,一輛非事故車盈利元:

          ①若該銷售商購進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至少有一輛事故車的概率;

          ②若該銷售商一次購進(jìn)輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在多面體中,是等邊三角形,是等腰直角三角形,,平面平面,平面,點(diǎn)的中點(diǎn),連接.

          (1)求證:平面

          (2),求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (Ⅰ)討論函數(shù)的單調(diào)區(qū)間與極值;

          (Ⅱ)若恒成立,求的最大值;

          (Ⅲ)在(Ⅱ)的條件下,且取得最大值時,設(shè),且函數(shù)有兩個零點(diǎn),求實(shí)數(shù)的取值范圍,并證明:

          查看答案和解析>>

          同步練習(xí)冊答案