日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (16分)如圖,四棱錐S-ABCD 的底面是正方形,每條側(cè)棱的長都是地面邊長的倍,

          P為側(cè)棱SD上的點(diǎn)。

          (Ⅰ)求證:ACSD;       

          (Ⅱ)若SD平面PAC,求二面角P-AC-D的大小

          (Ⅲ)在(Ⅱ)的條件下,側(cè)棱SC上是否存在一點(diǎn)E, 使得BE∥平

          面PAC。若存在,求SE:EC的值;若不存在,試說明理由。

           

           

          【答案】

          【解析】解法一:

               (Ⅰ)連BD,設(shè)AC交BD于O,由題意。在正方形ABCD中,,所以,得.[來源:學(xué).科.網(wǎng)Z.X.X.K]

                (Ⅱ)設(shè)正方形邊長,則。

          ,所以,

                連,由(Ⅰ)知,所以,     

          ,所以是二面角的平面角。

          ,知,所以,

          即二面角的大小為。

            (Ⅲ)在棱SC上存在一點(diǎn)E,使

          由(Ⅱ)可得,故可在上取一點(diǎn),使,過的平行線與的交點(diǎn)即為。連BN。在中知,又由于,故平面,得,由于,故.

          解法二:

               (Ⅰ);連,設(shè)交于,由題意知.以O(shè)為坐標(biāo)原點(diǎn),分別為軸、軸、軸正方向,建立坐標(biāo)系如圖。[來源:ZXXK]

             設(shè)底面邊長為,則高。

             于是    

                              

                     

                     

                        

          故     

          從而  

                (Ⅱ)由題設(shè)知,平面的一個法向量,平面的一個法向量,設(shè)所求二面角為,則,所求二面角的大小為[來源:Z_xx_k.Com]

               (Ⅲ)在棱上存在一點(diǎn)使.[來源:]

                由(Ⅱ)知是平面的一個法向量,

              且  

          設(shè)           

          則      [來源:ZXXK]

          而      

          即當(dāng)時,        [來源:ZXXK]

          不在平面內(nèi),故

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,四棱錐S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的一點(diǎn),平面EDC⊥平面SBC.
          (Ⅰ)證明:SE=2EB;
          (Ⅱ)求二面角A-DE-C的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,四棱錐S-ABCD的底面是邊長為3的正方形,SD丄底面ABCD,SB=3
          3
          ,點(diǎn)E、G分別在AB,SG 上,且AE=
          1
          3
          AB  CG=
          1
          3
          SC.
          (1)證明平面BG∥平面SDE;
          (2)求面SAD與面SBC所成二面角的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•醴陵市模擬)如圖,四棱錐S-ABCD的底面是矩形,SA⊥底面ABCD,P為BC邊的中點(diǎn),AD=2,AB=1.SP與平面ABCD所成角為
          π4
          . 
          (1)求證:平面SPD⊥平面SAP;
          (2)求三棱錐S-APD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,四棱錐S-ABCD底面ABCD是正方形,SA⊥底面ABCD,E是SC上一點(diǎn),且SE=2EC,SA=6,AB=2.
          (1)求證:平面EBD⊥平面SAC;
          (2)求三棱錐E-BCD的體積V.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2006•西城區(qū)二模)如圖,四棱錐S-ABCD中,平面SAC與底面ABCD垂直,側(cè)棱SA、SB、SC與底面ABCD所成的角均為45°,AD∥BC,且AB=BC=2AD.
          (1)求證:四邊形ABCD是直角梯形;
          (2)求異面直線SB與CD所成角的大;
          (3)求直線AC與平面SAB所成角的大。

          查看答案和解析>>

          同步練習(xí)冊答案