14分)已知橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,一個頂點(diǎn)為A(0,-1),且其右焦點(diǎn)到直線x-y+=0的距離為3.(I)求橢圓的方程;
(II)是否存在斜率為k(k≠0)的直線l,使l與已知橢圓交于不同的兩點(diǎn)M、N,
且|AN|=|AM|?若存在,求出k的取值范圍;若不存在,請說明理由.
(1)
(2)故滿足條件的直線l存在,其斜率k的范圍為-1<k<1且k≠0.
【解析】(I)解:由題意,設(shè)橢圓方程為:(a>1),
則右焦點(diǎn)為F (,0),由已知
,解得:a=
∴橢圓方程為:
…………5分
(II)解:設(shè)存在滿足條件的直線l,其方程為y=kx+b(k≠0)
由 得:
①
…………7分
設(shè)M(x1,y1)、N(x2,y2)是方程①的兩根,則
、 …………9分
由韋達(dá)定理得:
從而MN的中點(diǎn)P的坐標(biāo)為()
……10分
∵|AM|=|AN| ∴AP是線段MN的垂直平分線 ∴AP⊥MN
于是 , ………12分
代入②并整理得:(3k2+1)(k2-1)<0,∴-1<k<1
故滿足條件的直線l存在,其斜率k的范圍為-1<k<1且k≠0. ………14分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2011年江蘇省揚(yáng)州中學(xué)高二上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,長軸是短軸的3倍,且經(jīng)過點(diǎn)
,求橢圓的標(biāo)準(zhǔn)方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆山東省威海市高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
已知橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,離心率,過橢圓的右焦點(diǎn)且垂直于長軸的弦長為
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)已知直線與橢圓相交于
兩點(diǎn),且坐標(biāo)原點(diǎn)
到直線
的距離為
,
的大小是否為定值?若是求出該定值,不是說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三11月月考文科數(shù)學(xué)試卷 題型:解答題
(本小題滿分14分)已知橢圓以坐標(biāo)原點(diǎn)為中心,坐標(biāo)軸為對稱軸,且該橢圓以拋物線的焦點(diǎn)
為其一個焦點(diǎn),以雙曲線
的焦點(diǎn)
為頂點(diǎn)。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn),且
分別為橢圓的上頂點(diǎn)和右頂點(diǎn),點(diǎn)
是線段
上的動點(diǎn),求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)
已知橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,離心率,過橢圓的右焦點(diǎn)且垂直于長軸的弦長為
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知直線l與橢圓相交于P、Q兩點(diǎn),O為原點(diǎn),且OP⊥OQ。試探究點(diǎn)O到直線l的距離是否為定值?若是,求出這個定值;若不是,說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com