日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)數(shù)學(xué)公式,數(shù)學(xué)公式,其中m是不等于零的常數(shù),
          (1)(理)寫(xiě)出h(4x)的定義域;
          (文)m=1時(shí),直接寫(xiě)出h(x)的值域;
          (2)(文、理)求h(x)的單調(diào)遞增區(qū)間;
          (3)已知函數(shù)f(x)(x∈[a,b]),定義:f1(x)=minf(t)|a≤t≤x(x∈[a,b]),f2(x)=maxf(t)|a≤t≤x(x∈[a,b]).其中,minf(x)|x∈D表示函數(shù)f(x)在D上的最小值,maxf(x)|x∈D表示函數(shù)f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],則f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π].
          (理)當(dāng)m=1時(shí),設(shè)數(shù)學(xué)公式,不等式t≤M1(x)-M2(x)≤n恒成立,求t,n的取值范圍;
          (文)當(dāng)m=1時(shí),|h1(x)-h2(x)|≤n恒成立,求n的取值范圍.

          解:理(1)∵,

          ∴h(4x)的定義域?yàn)?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/534046.png' />
          (2)
          m<0時(shí),h(x)在遞增;
          時(shí),h(x)在遞增
          時(shí),h(x)在遞增
          (3)由題知:
          所以,h(x)>h(4x)
          h(x)=h(4x)
          h(x)<h(4x)







          文:(1)
          (2)m<0時(shí),h(x)在遞增
          時(shí),h(x)在遞增
          時(shí),h(x)在遞增
          (3)



          所以
          分析:(1)令4x在h(x)的定義域內(nèi),求出x的范圍,寫(xiě)出區(qū)間形式即為h(4x)的定義域.
          (2)對(duì)m分類(lèi)討論,利用導(dǎo)函數(shù)的符號(hào),當(dāng)導(dǎo)函數(shù)大于0時(shí)對(duì)應(yīng)的區(qū)間為遞增區(qū)間;導(dǎo)函數(shù)小于0時(shí),對(duì)應(yīng)的區(qū)間為遞減區(qū)間;求出函數(shù)的單調(diào)區(qū)間.
          (3)通過(guò)解不等式,比較出h(x)與h(4x)的大小,求出m(x)的解析式;求出M1(x),M2(x)求出M1(x)-M2(x)的值域,求出t,n的范圍.
          點(diǎn)評(píng):本題考查抽象函數(shù)的定義域的求法:知f(x)的定義域?yàn)閇a,b],求f(mx+n)的定義域只要解不等式a≤mx+n≤b即可、考查研究函數(shù)的單調(diào)區(qū)間時(shí),若含參數(shù)一般需要討論.分段函數(shù)的處理方法是先分再合的策略.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)h(x)=x+
          m
          x
          x∈[
          1
          4
          ,5]
          ,其中m是不等于零的常數(shù),
          (1)(理)寫(xiě)出h(4x)的定義域;
          (文)m=1時(shí),直接寫(xiě)出h(x)的值域;
          (2)(文、理)求h(x)的單調(diào)遞增區(qū)間;
          (3)已知函數(shù)f(x)(x∈[a,b]),定義:f1(x)=minf(t)|a≤t≤x(x∈[a,b]),f2(x)=maxf(t)|a≤t≤x(x∈[a,b]).其中,minf(x)|x∈D表示函數(shù)f(x)在D上的最小值,maxf(x)|x∈D表示函數(shù)f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],則f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π].
          (理)當(dāng)m=1時(shí),設(shè)M(x)=
          h(x)+h(4x)
          2
          +
          |h(x)-h(4x)|
          2
          ,不等式t≤M1(x)-M2(x)≤n恒成立,求t,n的取值范圍;
          (文)當(dāng)m=1時(shí),|h1(x)-h2(x)|≤n恒成立,求n的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:上海市奉賢區(qū)2011屆高三12月調(diào)研測(cè)試數(shù)學(xué)理科試題 題型:044

          設(shè)h(x)=,x∈[,5],其中m是不等于零的常數(shù),

          (1)寫(xiě)出h(4x)的定義域;

          (2)求h(x)的單調(diào)遞增區(qū)間;

          (3)已知函數(shù)f(x)(x∈[a,b]),定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],則f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π],當(dāng)m=1時(shí),設(shè),不等式t≤M1(x)-M2(x)≤n恒成立,求t,n的取值范圍;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:上海市奉賢區(qū)2011屆高三12月調(diào)研測(cè)試數(shù)學(xué)文科試題 題型:044

          設(shè)h(x)=x+,x∈[,5],其中m是不等于零的常數(shù),

          (1)m=1時(shí),直接寫(xiě)出h(x)的值域

          (2)求h(x)的單調(diào)遞增區(qū)間;

          (3)已知函數(shù)f(x)(x∈[a,b]),定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],則f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π],當(dāng)m=1時(shí),|h1(x)-h(huán)2(x)|≤n恒成立,求n的取值范圍;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011年上海市奉賢區(qū)高考數(shù)學(xué)一模試卷(文理合卷)(解析版) 題型:解答題

          設(shè),,其中m是不等于零的常數(shù),
          (1)(理)寫(xiě)出h(4x)的定義域;
          (文)m=1時(shí),直接寫(xiě)出h(x)的值域;
          (2)(文、理)求h(x)的單調(diào)遞增區(qū)間;
          (3)已知函數(shù)f(x)(x∈[a,b]),定義:f1(x)=minf(t)|a≤t≤x(x∈[a,b]),f2(x)=maxf(t)|a≤t≤x(x∈[a,b]).其中,minf(x)|x∈D表示函數(shù)f(x)在D上的最小值,maxf(x)|x∈D表示函數(shù)f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],則f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π].
          (理)當(dāng)m=1時(shí),設(shè),不等式t≤M1(x)-M2(x)≤n恒成立,求t,n的取值范圍;
          (文)當(dāng)m=1時(shí),|h1(x)-h2(x)|≤n恒成立,求n的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案