日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分別是棱AD,AA1的中點.
          (1)設(shè)F是棱AB的中點,證明:直線EE1∥平面FCC1;
          (2)證明:平面D1AC⊥平面BB1C1C.

          【答案】分析:(1)取A1B1的中點為F1,連接FF1,C1F1,要證明直線EE1∥平面FCC1,只需證明EE1∥F1C,就證明了EE1∥平面FCC1內(nèi)的直線,即可推得結(jié)論;
          (2)要證明平面D1AC⊥平面BB1C1C,只需證明AC⊥BC,AC⊥CC1,即可.
          解答:證明:(1)方法一:取A1B1的中點為F1,連接FF1,C1F1
          由于FF1∥BB1∥CC1,所以F1∈平面FCC1,因此平面FCC1即為平面C1CFF1
          連接A1D,F(xiàn)1C,由于A1F1D1C1CD,所以四邊形A1DCF1為平行四邊形,因此A1D∥F1C.
          又EE1∥A1D,得EE1∥F1C,而EE1?平面FCC1,F(xiàn)1C?平面FCC1,故EE1∥平面FCC1
          方法二:因為F為AB的中點,CD=2,AB=4,AB∥CD,所以CD綊AF,因此四邊形AFCD為平行四邊形,所以AD∥FC.又CC1∥DD1,F(xiàn)C∩CC1=C,F(xiàn)C?平面FCC1,CC1?平面FCC1,所以平面ADD1A1∥平面FCC1,又EE1?平面ADD1A1,所以EE1∥平面FCC1

          (2)連接AC,取F為AB的中點,在△FBC中,F(xiàn)C=BC=FB=2,
          又F為AB的中點,所以AF=FC=FB=2,因此∠ACB=90°,即AC⊥BC.又AC⊥CC1,且CC1∩BC=C,所以AC⊥平面BB1C1C,而AC?平面D1AC,故平面D1AC⊥平面BB1C1C.
          點評:本題考查直線與平面平行,平面與平面垂直的判定,考查空間想象能力,邏輯思維能力,是中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          18、如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分別是棱AD,AA1的中點,F(xiàn)為AB的中點.證明:
          (1)EE1∥平面FCC1
          (2)平面D1AC⊥平面BB1C1C.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          18、如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分別是棱AD,AA1的中點.
          (1)設(shè)F是棱AB的中點,證明:直線EE1∥平面FCC1;
          (2)證明:平面D1AC⊥平面BB1C1C.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          15、如圖,在直四棱柱ABCD-A1B1C1D1中,A1C1⊥B1D1,E,F(xiàn)分別是AB,BC的中點.
          (1)求證:EF∥平面A1BC1;
          (2)求證:平面D1DBB1⊥平面A1BC1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1,F(xiàn)分別是棱AD,AA1,AB的中點.
          (1)證明:直線EE1∥平面FCC1;
          (2)求二面角B-FC1-C的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2010•撫州模擬)如圖,在直四棱柱ABCD-A1B1C1D1中,AB=BC,∠ABC=60°,BB1=BC=2,M為BC中點,點N在CC1上.
          (1)試確定點N的位置,使AB1⊥MN;
          (2)當(dāng)AB1⊥MN時,求二面角M-AB1-N的正切值.

          查看答案和解析>>

          同步練習(xí)冊答案