日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,BC是Rt△ABC的斜邊,AP⊥平面ABC,連接PB、PC,作PD⊥BC于D,連接AD,則圖中共有直角三角形______個.
          ∵AP⊥平面ABC,BC?平面ABC,
          ∴PA⊥BC,
          又PD⊥BC于D,連接AD,PD∩PA=A,
          ∴BC⊥平面PAD,AD?平面PAD,
          ∴BC⊥AD;
          又BC是Rt△ABC的斜邊,
          ∴∠BAC為直角,
          ∴圖中的直角三角形有:△ABC,△PAC,△PAB,△PAD,△PDC,△PDB,△ADC,△ADB.
          故答案為:8.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知如圖所示,PA、PO分別是平面α的垂線、斜線,AO是PO在平面α內(nèi)的射影,且直線a?α,a⊥PO.求證:a⊥AO.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          △ABC所在平面外一點P,分別連接PA、PB、PC,則這四個三角形中直角三角形最多有( 。
          A.4個B.3個C.2個D.1個

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,AB為圓O的直徑,點C為圓O上異于A、B的一點,PA⊥平面ABC,點A在PB、PC上的射影分別為點E、F.
          (1)求證:PB⊥平面AFE;
          (2)若AB=4,PA=3,BC=2,求三棱錐C-PAB的體積與此三棱錐的外接球(即點P、A、B、C都在此球面上)的體積之比.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖所示,正方形ABCD和矩形ACEF所在的平面相互垂直,已知AB=2,AF=
          2

          (I)求證:EO⊥平面BDF;
          (II)求二面角A-DF-B的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,四棱錐P-ABCD的底面ABCD是邊長為2的菱形,∠ABC=60°,點M是棱PC的中點,PA⊥平面ABCD,AC、BD交于點O.
          (1)已知:PA=
          2
          ,求證:AM⊥平面PBD;
          (2)若二面角M-AB-D的余弦值等于
          21
          7
          ,求PA的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,四棱錐S?ABCD中,底面ABCD是正方形,SA⊥面ABCD,且SA=AB,M、N分別為SB、SD中點,求證:
          (1)DB平面AMN.
          (2)SC⊥平面AMN.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖所示,在四棱錐P-ABCD中,底面ABCD是菱形,∠BAD=60°AB=PA=2,PA⊥平面ABCD,E是PC的中點,F(xiàn)是AB的中點.
          (1)求證:BE平面PDF;
          (2)求證:平面PDF⊥平面PAB;
          (3)求BE與平面PAC所成的角.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在棱錐P-ABCD中,側(cè)面PDC是邊長為2的正三角形,且與底面垂直,底面ABCD是菱形,且∠ADC=60°,M為PB的中點,
          (1)求證:PA⊥CD;
          (2)求二面角P-AB-D的大;
          (3)求證:平面CDM⊥平面PAB.

          查看答案和解析>>

          同步練習(xí)冊答案