日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在三棱錐P-ABC中,平面PAC⊥平面ABC,AB⊥BC,AB=BC=PA=PC,點O、D分別是AC、PC的中點.
          ( I)求證:OD∥平面PAB;
          ( II)求PB與平面ABC所成角.
          分析:(Ⅰ)利用三角形中位線的性質(zhì),可得線線平行,從而可得線面平行;
          (Ⅱ)連接PO,OB,先證明∠PBO是直線PB與平面ABC所成角,再求PB與平面ABC所成角.
          解答:(Ⅰ)證明:∵O、D分別為AC、PC中點,∴OD∥PA
          ∵PA∥平面PAB,
          ∴OD∥平面PAB---------(4分)
          (Ⅱ)解:連接PO,OB
          ∵PA=PC,∴PO⊥AC
          ∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC
          ∴PO⊥平面ABC
          ∴∠PBO是直線PB與平面ABC所成角
          設(shè)AB=BC=PA=PC=1,則
          ∵AB⊥BC,∴0B=0C=
          2
          2
          PO=
          1-(
          2
          2
          )
          2
          =
          2
          2

          ∴tan∠PBO=
          PO
          OB
          =1,∴∠PBO=45°
          ∴PB與平面ABC所成角為45°---------(6分)
          點評:本題考查線面平行,考查線面角,考查學(xué)生分析解決問題的能力,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在三棱錐P-ABC中,PA、PB、PC兩兩垂直,且PA=3.PB=2,PC=1.設(shè)M是底面ABC內(nèi)一點,定義f(M)=(m,n,p),其中m、n、p分別是三棱錐M-PAB、三棱錐M-PBC、三棱錐M-PCA的體積.若f(M)=(
          1
          2
          ,x,y),且
          1
          x
          +
          a
          y
          ≥8恒成立,則正實數(shù)a的最小值為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在三棱錐P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,則當(dāng)△AEF的面積最大時,tanθ的值為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在三棱錐P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分別為AB、AC中點.
          (Ⅰ)求證:DE‖平面PBC;
          (Ⅱ)求證:AB⊥PE;
          (Ⅲ)求二面角A-PB-E的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在三棱錐P-ABC中,已知PA=PB=PC,∠BPA=∠BPC=∠CPA=40°,一繩子從A點繞三棱錐側(cè)面一圈回到點A的最短距離是
          3
          ,則PA=
          1
          1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在三棱錐P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,點D,E分別在棱
          PB,PC上,且BC∥平面ADE
          (I)求證:DE⊥平面PAC;
          (Ⅱ)當(dāng)二面角A-DE-P為直二面角時,求多面體ABCED與PAED的體積比.

          查看答案和解析>>

          同步練習(xí)冊答案