日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓的一個(gè)頂點(diǎn)為B(0,-1),焦點(diǎn)在x軸上,若右焦點(diǎn)F到直線x-y+2=0的距離為3.  
          (1)求橢圓的方程;
          (2)設(shè)直線l與橢圓相交于不同的兩點(diǎn)M、N,直線l的斜率為k(k≠0),當(dāng)|BM|=|BN|時(shí),求直線l縱截距的取值范圍.
          【答案】分析:(1)由橢圓的一個(gè)頂點(diǎn)為B(0,-1),知b=1,由焦點(diǎn)在x軸上,右焦點(diǎn)F到直線x-y+2=0的距離為3,解得c=.由此能求出橢圓方程.  
          (2)設(shè)P為弦MN的中點(diǎn),由,得(3k2+1)x2+6kmx+3(m2-1)=0.利用根的判別式和韋達(dá)定理,結(jié)合題設(shè)能求出m的取值范圍.
          解答:解:(1)∵橢圓的一個(gè)頂點(diǎn)為B(0,-1),
          ∴b=1,
          ∵焦點(diǎn)在x軸上,∴設(shè)右焦點(diǎn)F(c,0),c>0
          ∵右焦點(diǎn)F到直線x-y+2=0的距離為3,
          ∴3=,解得c=
          ∴a2=b2+c2=1+2=3,
          ∴橢圓方程為
          (2)設(shè)P為弦MN的中點(diǎn),
          得(3k2+1)x2+6kmx+3(m2-1)=0.
          由△>0,得m2<3k2+1  ①,
          ∴xP=,
          從而yP=kxp+m=
          ∴kBP=
          由MN⊥BP,得=-,
          即2m=3k2+1②.
          將②代入①,得2m>m2
          解得0<m<2.由②得k2=>0.
          解得m>.故所求m的取值范圍為(,2).
          點(diǎn)評:本題考查橢圓方程的求法,考查直線的截距的取值范圍的求法,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓的一個(gè)頂點(diǎn)為A(0,-1),焦點(diǎn)在x軸上.若右焦點(diǎn)到直線x-y+2
          2
          =0的距離為3.
          (1)求橢圓的方程;
          (2)設(shè)橢圓與直線y=kx+m(k≠0)相交于不同的兩點(diǎn)M、N.當(dāng)|AM|=|AN|時(shí),求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓的一個(gè)頂點(diǎn)為(-2,0),焦點(diǎn)在x軸上,且離心率為
          2
          2

          (1)求橢圓的標(biāo)準(zhǔn)方程.
          (2)斜率為1的直線l與橢圓交于A、B兩點(diǎn),O為原點(diǎn),當(dāng)△AOB的面積最大時(shí),求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓的一個(gè)頂點(diǎn)為A(0,-1),焦點(diǎn)在x軸上,離心率為
          6
          3

          (1)求橢圓的方程;
          (2)設(shè)橢圓與直線y=kx+m(k≠0)相交于不同的兩點(diǎn)M、N,當(dāng)|AM|=|AN|時(shí),求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓的一個(gè)頂點(diǎn)為B(0,-1),焦點(diǎn)在x軸上,若右焦點(diǎn)F到直線x-y+2
          2
          =0的距離為3.  
          (1)求橢圓的方程;
          (2)設(shè)直線l與橢圓相交于不同的兩點(diǎn)M、N,直線l的斜率為k(k≠0),當(dāng)|BM|=|BN|時(shí),求直線l縱截距的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓的一個(gè)頂點(diǎn)為A(0,-1),焦點(diǎn)在x軸上,且右焦點(diǎn)到直線x-y+2
          2
          =0的距離為3,一條斜率為k(k≠0)的直線l與該橢圓交于不同的兩點(diǎn)M、N,且滿足|
          AM
          |=|
          AN
          |
          ,求實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案