日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)M是橢圓上的任意一點(diǎn),若F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),則|MF1|+|MF2|等于( )
          A.2
          B.3
          C.4
          D.6
          【答案】分析:利用橢圓的概念即可求得|MF1|+|MF2|的值.
          解答:解:∵M(jìn)是橢圓+=1上的任意一點(diǎn),
          又F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),
          ∴|MF1|+|MF2|=2a=6.
          故選D.
          點(diǎn)評:本題考查橢圓的概念,屬于基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C的中心在坐標(biāo)原點(diǎn),長軸在x軸上,F(xiàn)1、F2分別為其左、右焦點(diǎn),P在橢圓上任意一點(diǎn),且
          F1P
          F2P
          的最大值為1,最小值為-2.
          (1)求橢圓C的方程;
          (2)設(shè)A為橢圓C的右頂點(diǎn),直線l是與橢圓交于M、N兩點(diǎn)的任意一條直線,若AM⊥AN,證明直線l過定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系xOy中,已知圓x2+y2=1與x軸正半軸的交點(diǎn)為F,AB為該圓的一條弦,直線AB的方程為x=m.記以AB為直徑的圓為⊙C,記以點(diǎn)F為右焦點(diǎn)、短半軸長為b(b>0,b為常數(shù))的橢圓為D.
          (1)求⊙C和橢圓D的標(biāo)準(zhǔn)方程;
          (2)當(dāng)b=1時(shí),求證:橢圓D上任意一點(diǎn)都不在⊙C的內(nèi)部;
          (3)已知點(diǎn)M是橢圓D的長軸上異于頂點(diǎn)的任意一點(diǎn),過點(diǎn)M且與x軸不垂直的直線交橢圓D于P、Q兩點(diǎn)(點(diǎn)P在x軸上方),點(diǎn)P關(guān)于x軸的對稱點(diǎn)為N,設(shè)直線QN交x軸于點(diǎn)L,試判斷
          OM
          OL
          是否為定值?并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•深圳一模)已知橢圓C 的中心為原點(diǎn)O,焦點(diǎn)在x 軸上,離心率為
          3
          2
          ,且點(diǎn)(1,
          3
          2
          )
          在該橢圓上.
          (1)求橢圓C的方程;
          (2)如圖,橢圓C 的長軸為AB,設(shè) P 是橢圓上異于 A、B 的任意一點(diǎn),PH⊥x軸,H為垂足,點(diǎn)Q 滿足
          PQ
          =
          HP
          ,直線AQ與過點(diǎn)B 且垂直于x 軸的直線交于點(diǎn)M,
          BM
          =4
          BN
          .求證:∠OQN為銳角.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•汕頭一模)如圖.已知橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的長軸為AB,過點(diǎn)B的直線l與x軸垂直,橢圓的離心率e=
          3
          2
          ,F(xiàn)1為橢圓的左焦點(diǎn)且
          AF1
          F1B
          =1.
          (I)求橢圓的標(biāo)準(zhǔn)方程;
          (II)設(shè)P是橢圓上異于A、B的任意一點(diǎn),PH⊥x軸,H為垂足,延長HP到點(diǎn)Q使得HP=PQ.連接AQ并延長交直線l于點(diǎn)M,N為MB的中點(diǎn),判定直線QN與以AB為直徑的圓O的位置關(guān)系.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•重慶一模)給出以下4個(gè)命題:
          ①曲線x2-(y-1)2=1按
          a
          =(1,-2)平移可得曲線(x+1)2-(y-3)2=1;
          ②若|x-1|+|y-1|≤1,則使x-y取得最小值的最優(yōu)解有無數(shù)多個(gè);
          ③設(shè)A、B為兩個(gè)定點(diǎn),n為常數(shù),|
          PA
          |-|
          PB
          |=n,則動點(diǎn)P的軌跡為雙曲線;
          ④若橢圓的左、右焦點(diǎn)分別為F1、F2,P是該橢圓上的任意一點(diǎn),延長F1P到點(diǎn)M,使|F2P|=|PM|,則點(diǎn)M的軌跡是圓.
          其中所有真命題的序號為
          ②④
          ②④

          查看答案和解析>>

          同步練習(xí)冊答案