日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若P是雙曲線C1
          x2
          a2
          -
          y2
          b2
          =1(a>0,b>0)
          和圓C2:x2+y2=a2+b2的一個(gè)交點(diǎn),且∠PF2F1=2∠PF1F2,其中F1、F2是雙曲線C1的兩個(gè)焦點(diǎn),則雙曲線C1的離心率的為
           
          分析:a2+b2=c2,知圓C2必過雙曲線C1的兩個(gè)焦點(diǎn),F1PF2=
          π
          2
          ,2∠PF1F2=∠PF2F1=
          π
          3
          ,則|PF2|=c,|PF1| =
          3
          c,由此能求出雙曲線的離心率.
          解答:解:∵a2+b2=c2,
          ∴圓C2必過雙曲線C1的兩個(gè)焦點(diǎn),F1PF2=
          π
          2
          ,
          2∠PF1F2=∠PF2F1=
          π
          3
          ,則|PF2|=c,|PF1| =
          3
          c,
          故雙曲線的離心率為
          2c
          3
          c-c
          =
          3
          +1

          故答案為:
          3
          +1
          點(diǎn)評(píng):本題考查雙曲線的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知點(diǎn)P(x0,y0)是漸近線為2x±3y=0且經(jīng)過定點(diǎn)(6,2
          3
          )的雙曲線C1上的一動(dòng)點(diǎn),點(diǎn)Q是P關(guān)于雙曲線C1實(shí)軸A1A2的對(duì)稱點(diǎn),設(shè)直線PA1與QA2的交點(diǎn)為M(x,y),
          (1)求雙曲線C1的方程;
          (2)求動(dòng)點(diǎn)M的軌跡C2的方程;
          (3)已知x軸上一定點(diǎn)N(1,0),過N點(diǎn)斜率不為0的直線L交C2于A、B兩點(diǎn),x軸上是否存在定點(diǎn) K(x0,0)使得∠AKN=∠BKN?若存在,求出點(diǎn)K的坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知中心在坐標(biāo)原點(diǎn),坐標(biāo)軸為對(duì)稱軸的橢圓C和等軸雙曲線C1,點(diǎn)(
          5
          ,-1)
          在曲線C1上,橢圓C的焦點(diǎn)是雙曲線C1的頂點(diǎn),且橢圓C與y軸正半軸的交點(diǎn)M到直線x-
          3
          y-2=0
          的距離為4.
          (Ⅰ)求雙曲線C1和橢圓C的標(biāo)準(zhǔn)方程;
          (Ⅱ)直線x=2與橢圓C相交于P、Q兩點(diǎn),A、B是橢圓上位于直線PQ兩側(cè)的兩動(dòng)點(diǎn),若直線AB的斜率為
          1
          2
          ,求四邊形APBQ面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•湛江二模)已知橢圓C1
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的左、右頂點(diǎn)分別是A、B,P是雙曲線C2
          x2
          a2
          -
          y2
          b2
          =1右支x軸上方的一點(diǎn),連接AP交橢圓于點(diǎn)C,連接PB并延長交橢圓于點(diǎn)D.
          (1)若a=2b,求橢圓C1及雙曲線C2的離心率;
          (2)若△ACD和△PCD的面積相等,求點(diǎn)P的坐標(biāo)(用a,b表示).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知中心在坐標(biāo)原點(diǎn),坐標(biāo)軸為對(duì)稱軸的橢圓C和等軸雙曲線C1,點(diǎn)數(shù)學(xué)公式在曲線C1上,橢圓C的焦點(diǎn)是雙曲線C1的頂點(diǎn),且橢圓C與y軸正半軸的交點(diǎn)M到直線數(shù)學(xué)公式的距離為4.
          (Ⅰ)求雙曲線C1和橢圓C的標(biāo)準(zhǔn)方程;
          (Ⅱ)直線x=2與橢圓C相交于P、Q兩點(diǎn),A、B是橢圓上位于直線PQ兩側(cè)的兩動(dòng)點(diǎn),若直線AB的斜率為數(shù)學(xué)公式,求四邊形APBQ面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省部分重點(diǎn)中學(xué)聯(lián)考高二(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

          已知點(diǎn)P(x,y)是漸近線為2x±3y=0且經(jīng)過定點(diǎn)(6,2)的雙曲線C1上的一動(dòng)點(diǎn),點(diǎn)Q是P關(guān)于雙曲線C1實(shí)軸A1A2的對(duì)稱點(diǎn),設(shè)直線PA1與QA2的交點(diǎn)為M(x,y),
          (1)求雙曲線C1的方程;
          (2)求動(dòng)點(diǎn)M的軌跡C2的方程;
          (3)已知x軸上一定點(diǎn)N(1,0),過N點(diǎn)斜率不為0的直線L交C2于A、B兩點(diǎn),x軸上是否存在定點(diǎn) K(x,0)使得∠AKN=∠BKN?若存在,求出點(diǎn)K的坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案