日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=alnx-ax-3(a∈R).
          (Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
          (Ⅱ)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,問:m在什么范圍取值時(shí),對(duì)于任意的t∈[1,2],函數(shù)g(x)=x3+x2[
          m
          2
          +f′(x)]
          在區(qū)間(t,3)上總存在極值?
          (Ⅲ)當(dāng)a=2時(shí),設(shè)函數(shù)h(x)=(p-2)x-
          p+2e
          x
          -3
          ,若在區(qū)間[1,e]上至少存在一個(gè)x0,使得h(x0)>f(x0)成立,試求實(shí)數(shù)p的取值范圍.
          分析:(I)由題意及函數(shù)解析式需用導(dǎo)函數(shù)來求其單調(diào)區(qū)間;
          (II)由導(dǎo)函數(shù)的幾何意義可以先求出a的值,此時(shí)函數(shù)f(x)就具體了,然后代入g(x)的解析式,再利用一元3次函數(shù)存在極值的充要條件建立m的不等式即可;
          (III)由題意構(gòu)建新函數(shù)F(x),這樣問題轉(zhuǎn)化為使函數(shù)F(x)在[1,e]上至少有一解的判斷.
          解答:解:(Ι)當(dāng)a=1時(shí),函數(shù)f(x)=alnx-ax-3=lnx-x-3;導(dǎo)函數(shù)為f(x)=
          1
          x
          -1

          當(dāng)0<x<1時(shí),函數(shù)f(x)單調(diào)遞增,當(dāng)時(shí)x>1時(shí),函數(shù)f(x)單調(diào)遞減;
          故減區(qū)間為(1,+∞),增區(qū)間為(0,1);
          (Ⅱ)∵g(x)=x3+x2[
          m
          2
          +f′(x)]=x3+(2+
          m
          2
          )
          x2-2x,
          ∴g‘(x)=3x2+(4+m)x-2,
          ∵g(x)在區(qū)間(t,3)上總存在極值,∴g‘(x)=3x2+(4+m)x-2在區(qū)間(t,3)上存在零點(diǎn),
          g′(t)<0
          g′(3)>0.

          解得-
          37
          3
          <m<-9

          所以當(dāng)m∈(-
          37
          3
          ,-9)
          時(shí),對(duì)于任意的t∈[1,2]函數(shù)g(x)=x3+x2[
          m
          2
          +f′(x)]
          在區(qū)間(t,3)上總存在極值.
          (Ⅲ)∴令F(x)=h(x)-f(x)=(p-2)x-
          p+2e
          x
          -3-2lnx+2x+3=px-
          p
          x
          -
          2e
          x
          -2lnx

          ①當(dāng)p≤0時(shí),由x∈[1,e]得px-
          p
          x
          ≤0,-
          2e
          x
          -2lnx<0.
          所以,在[1,e]上不存在x0,使得h(x0)>f(x0)成立;
          ②當(dāng)p>0時(shí),F(xiàn)'(x)=
          px2-2x+p+2e
          x2
          ,∵x∈[1,e],
          ∴2e-2x≥0,px2+p>0,F(xiàn)'(x)>0在[1,e]上恒成立,故F(x)在[1,e]上單調(diào)遞增.
          F(x)max=F(e)=pe-
          p
          e
          -4

          故只要pe-
          p
          e
          -4>0
          ,解得p>
          4e
          e2-1
          .所以p的取值范圍是(
          4e
          e2-1
          ,+∞)
          點(diǎn)評(píng):(I)此題在這一問重點(diǎn)考查了函數(shù)上某點(diǎn)處的導(dǎo)函數(shù)值的幾何意義是此函數(shù)在該點(diǎn)處與函數(shù)相切的切線的斜率,還考查了利用導(dǎo)函數(shù)求函數(shù)的單調(diào)區(qū)間的方法;
          (II)在此重點(diǎn)考查了導(dǎo)數(shù)的集合意義及連續(xù)函數(shù)在閉區(qū)間有極值的充要條件;
          (III)此處重點(diǎn)考查了等價(jià)轉(zhuǎn)化的思想,把問題轉(zhuǎn)化為構(gòu)建一新函數(shù),并考查了函數(shù)F(x)在定義域下恒成立問題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          a-x2
          x
          +lnx  (a∈R , x∈[
          1
          2
           , 2])

          (1)當(dāng)a∈[-2,
          1
          4
          )
          時(shí),求f(x)的最大值;
          (2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點(diǎn),則不等式f(x)>
          34
          的解集為
          (-∞,-2)
          (-∞,-2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(diǎn)(1,3),解不等式f(
          2x
          )>3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
          (1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
          (2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
          f(x)   ,  x>0
          -f(x) ,    x<0
           給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案