日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)在邊長(zhǎng)為60cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個(gè)無(wú)蓋的方底箱子,箱底的邊長(zhǎng)是多少時(shí),箱子的容積最大?最大容積是多少?
          分析:先設(shè)箱底邊長(zhǎng)為xcm,則箱高h=
          60-x
          2
          cm,得箱子容積,再利用導(dǎo)數(shù)的方法解決,應(yīng)注意函數(shù)的定義域.
          解答:精英家教網(wǎng)解:設(shè)箱底邊長(zhǎng)為xcm,則箱高h=
          60-x
          2
          cm,得箱子容積V(x)=x2h=
          60x2-x3
          2
          (0<x<60).
          V′(x)=60x-
          3x2
          2
          (0<x<60)
          令    V′(x)=60x-
          3x2
          2
          =0,
          解得  x=0(舍去),x=40,
          并求得V(40)=16 000
          由題意可知,當(dāng)x過(guò)。ń咏0)或過(guò)大(接近60)時(shí),箱子容積很小,因此,16 000是最大值
          答:當(dāng)x=40cm時(shí),箱子容積最大,最大容積是16 000cm3
          點(diǎn)評(píng):(1)解有關(guān)函數(shù)最大值、最小值的實(shí)際問(wèn)題,需要分析問(wèn)題中各個(gè)變量之間的關(guān)系,找出適當(dāng)?shù)暮瘮?shù)關(guān)系式,并確定函數(shù)的定義區(qū)間;所得結(jié)果要符合問(wèn)題的實(shí)際意義.(2)根據(jù)問(wèn)題的實(shí)際意義來(lái)判斷函數(shù)最值時(shí),如果函數(shù)在此區(qū)間上只有一個(gè)極值點(diǎn),那么這個(gè)極值就是所求最值,不必再與端點(diǎn)值比較.(3)相當(dāng)多有關(guān)最值的實(shí)際問(wèn)題用導(dǎo)數(shù)方法解決較簡(jiǎn)單
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)請(qǐng)你設(shè)計(jì)一個(gè)包裝盒,如圖所示,ABCD是邊長(zhǎng)為60cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得A,B,C,D四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱柱形狀的包裝盒,E、F在AB上,是被切去的等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)AE=FB=x(cm).
          (1)若廣告商要求包裝盒側(cè)面積S(cm2)最大,試問(wèn)x應(yīng)取何值?
          (2)若廣告商要求包裝盒容積V(cm3)最大,試問(wèn)x應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長(zhǎng)的比值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省威海四中高二(下)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          請(qǐng)你設(shè)計(jì)一個(gè)包裝盒,如圖所示,ABCD是邊長(zhǎng)為60cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得A,B,C,D四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱柱形狀的包裝盒,E、F在AB上,是被切去的等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)AE=FB=x(cm).
          (1)若廣告商要求包裝盒側(cè)面積S(cm2)最大,試問(wèn)x應(yīng)取何值?
          (2)若廣告商要求包裝盒容積V(cm3)最大,試問(wèn)x應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長(zhǎng)的比值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011年江蘇省高考數(shù)學(xué)試卷(解析版) 題型:解答題

          請(qǐng)你設(shè)計(jì)一個(gè)包裝盒,如圖所示,ABCD是邊長(zhǎng)為60cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得A,B,C,D四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱柱形狀的包裝盒,E、F在AB上,是被切去的等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)AE=FB=x(cm).
          (1)若廣告商要求包裝盒側(cè)面積S(cm2)最大,試問(wèn)x應(yīng)取何值?
          (2)若廣告商要求包裝盒容積V(cm3)最大,試問(wèn)x應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長(zhǎng)的比值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2013屆廣東省高二第七學(xué)段考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

          (本小題14分)請(qǐng)你設(shè)計(jì)一個(gè)包裝盒,如圖所示,ABCD是邊長(zhǎng)為60cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得ABCD四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱柱(底面是正方形的直棱柱)形狀的包裝盒,E、F在AB上是被切去的等腰直角三角形HEF斜邊的兩個(gè)端點(diǎn),設(shè)AE=FB=xcm.

          (1)請(qǐng)用分別表示|GE|、|EH|的長(zhǎng)

          (2)若廣告商要求包裝盒側(cè)面積S(cm2)最大,試問(wèn)x應(yīng)取何值?

          H

           
          (3)若廣告商要求包裝盒容積V(cm3)最大,試問(wèn)x應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長(zhǎng)的比值.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河南省信陽(yáng)市畢業(yè)班第一次調(diào)研考試文科數(shù)學(xué)試卷 題型:解答題

             (本小題滿(mǎn)分12分)請(qǐng)你設(shè)計(jì)一個(gè)包裝盒,如下圖所示,ABCD是邊長(zhǎng)為60cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得A、B、C、D四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱挪狀的包裝盒E、F在AB上,是被切去的一等腰直角三角形斜邊的兩個(gè)端點(diǎn).設(shè)AE= FB=x(cm).

           

           

          (I)某廣告商要求包裝盒的側(cè)面積S(cm2)最大,試問(wèn)x應(yīng)取何值?

          (II)某廠商要求包裝盒的容積V(cm3)最大,試問(wèn)x應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長(zhǎng)的比值.[

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案