日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設函數(shù).

          (1)若函數(shù)處有極值,求函數(shù)的最大值;

          (2)是否存在實數(shù),使得關(guān)于的不等式上恒成立?若存在,求出的取值范圍;若不存在,說明理由;

          證明:不等式

          【答案】(1)最大值為;(2)的取值范圍是;證明見解析.

          【解析】

          試題分析:(1)由處有極值得,從而求得,然后由正負,研究的單調(diào)性,得極值,最值;(2)這類問題,可假設存在,不等式上恒成立,考慮到,因此最好有時,,則恒成立結(jié)論為真,由此研究單調(diào)性,求導,注意到,因此分類 ,分別研究的正負,得的單調(diào)性,可得結(jié)論;要證明此不等式,可能需要用到上面函數(shù)的結(jié)論,由上面的推理,取得不等式:,令,則,因此只要證得是遞減數(shù)列,不等式的右邊就證得,為此作差

          不等式的左邊,由,則有.這里用到了不等式的放縮法.

          試題解析:(1)由已知得:,且函數(shù)處有極值

          ,當時,單調(diào)遞增

          時,單調(diào)遞減

          所以函數(shù)的最大值為

          (2)由已知得:

          )若,則時,

          所以上為減函數(shù)

          上恒成立;

          )若,則時,

          所以上為增函數(shù)

          ,不能使上恒成立;

          )若,則時,

          時,

          所以上為增函數(shù),

          此時

          所以不能使上恒成立

          綜上所述,的取值范圍是

          由以上得:

          得:,令

          因此

          .

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】產(chǎn)品按行業(yè)生產(chǎn)標準分成個等級,等級系數(shù)依次,其中為標準,為標準.已知甲廠執(zhí)行標準生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價元/件;乙廠執(zhí)行標準生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價為/件,假定甲、乙兩廠的產(chǎn)品都符合相應的執(zhí)行標準.

          (1)已知甲廠產(chǎn)品的等級系數(shù)的概率分布如下所示

          的數(shù)學期望,求的值

          (2)為分析乙廠產(chǎn)品的等級系數(shù),從該廠生產(chǎn)的產(chǎn)品中隨機抽取件,相應的等級系數(shù)組成一個樣本,數(shù)據(jù)如下:

          用這個樣本的頻率分布估計總體分布,將頻視為概,求等級系數(shù)的數(shù)學期望;

          (3)(1)、(2)的條件下,若以性價比為判斷標準,則哪個工廠的產(chǎn)品更具可購買性?說明理由.注:產(chǎn)品的性價;

          性價大的產(chǎn)品更具可購性.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】命題“任意四面體均有內(nèi)切球”的否定形式是______.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方

          圖:

          將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為體育迷”.

          )根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料,在犯錯誤的概率不超過的前提下,你是否有理由認為體育迷與性別有關(guān)?


          非體育迷

          體育迷

          合計







          10

          55

          合計




          )將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的體育迷人數(shù)為.若每次抽取的結(jié)果是相互獨立的,求的分布列,期望和方差.

          附:







          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù),若曲線在點處的切線與直線垂直.

          1的值;

          2函數(shù)恰有兩個零點,求函數(shù)的單調(diào)區(qū)間及實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】為了了解某校學生喜歡吃辣是否與性別有關(guān),隨機對此校100人進行調(diào)查,得到如下的列表:已知在全部100人中隨機抽取1人抽到喜歡吃辣的學生的概率為

          喜歡吃辣

          不喜歡吃辣

          合計

          男生

          10

          女生

          20

          合計

          100

          (1)請將上面的列表補充完整;

          (2)是否有99.9%以上的把握認為喜歡吃辣與性別有關(guān)?說明理由:

          下面的臨界值表供參考:

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          (參考公式:,其中

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,已知定圓,定直線,過的一條動直線與直線相交于,與圓相交于,兩點,中點.

          )當垂直時,求證:過圓心;

          )當時,求直線的方程;

          )設,試問是否為定值,若為定值,請求出的值;若不為定值,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù),.

          (1)若函數(shù)上不具有單調(diào)性,求實數(shù)m的取值范圍;

          (2)若,

          求實數(shù)a的值

          ,,,當時,試比較的大小.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)

          )當時,求解方程;

          )根據(jù)的不同取值,討論函數(shù)的奇偶性,并說明理由.

          查看答案和解析>>

          同步練習冊答案