日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知點(diǎn)P為圓周x2+y2=4的動(dòng)點(diǎn),過(guò)P點(diǎn)作PH⊥x軸,垂足為H,設(shè)線段PH的中點(diǎn)為E,記點(diǎn)E的軌跡方程為C,點(diǎn)A(0,1)
          (1)求動(dòng)點(diǎn)E的軌跡方程C;
          (2)若斜率為k的直線l經(jīng)過(guò)點(diǎn)A(0,1)且與曲線C的另一個(gè)交點(diǎn)為B,求△OAB面積的最大值及此時(shí)直線l的方程;
          (3)是否存在方向向量的直線l,使得l與曲線C交與兩個(gè)不同的點(diǎn)M,N,且有?若存在,求出k的取值范圍;若不存在,說(shuō)明理由.
          【答案】分析:(1)欲求動(dòng)點(diǎn)E的軌跡方程,設(shè)E(x,y),只須求出其坐標(biāo)x,y的關(guān)系式即可,利用P(x,2y)點(diǎn)在圓上,即可得到答案;
          (2)根據(jù)三角形的面積公式得,欲求面積的最大值,只須考慮|xB|的最大值即可.由此求出直線l的方程;
          (3)先假設(shè)存在符合題設(shè)條件的直線l,設(shè)其方程為:y=kx+m,將直線的方程代入橢圓的方程,消去y得到關(guān)于x的一元二次方程,再結(jié)合根系數(shù)的關(guān)系利用中點(diǎn)坐標(biāo)公式,求出k的取值范圍,若出現(xiàn)矛盾,則說(shuō)明假設(shè)不成立,即不存在;否則存在.
          解答:解:(1)設(shè)E(x,y),則P(x,2y),而P點(diǎn)在圓上
          所以x2+4y2=4,即
          (2)
          而|xB|≤2,故當(dāng)xB=±2時(shí),△OAB面積的最大值為1
          此時(shí),直線l的方程為:x-2y+2=0或x+2y-2=0
          (3)假設(shè)存在符合題設(shè)條件的直線l,設(shè)其方程為:y=kx+m,
          M(x1,y1),N(x2,y2),MN的中點(diǎn)Q(x,y
          于是⇒(1+4k2)x2+8kmx+4m2-4=0
          △=64k2m2-4(1+4k2)(4m2-4)>0
          4k2-m2+1>0…①


          從而


          故kAQ•k=-1
          可得:3m=-4k2-1…②
          由①②得:-3<m<0

          點(diǎn)評(píng):考查軌跡的求法和向量在幾何中的應(yīng)用,直線與圓錐曲線相交弦的中點(diǎn)問(wèn)題,解題方法一般聯(lián)立,消元,利用韋達(dá)定理,體現(xiàn)了方程的思想和轉(zhuǎn)化的思想方法,屬中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知點(diǎn)P為圓周x2+y2=4的動(dòng)點(diǎn),過(guò)P點(diǎn)作PH⊥x軸,垂足為H,設(shè)線段PH的中點(diǎn)為E,記點(diǎn)E的軌跡方程為C,點(diǎn)A(0,1)
          (1)求動(dòng)點(diǎn)E的軌跡方程C;
          (2)若斜率為k的直線l經(jīng)過(guò)點(diǎn)A(0,1)且與曲線C的另一個(gè)交點(diǎn)為B,求△OAB面積的最大值及此時(shí)直線l的方程;
          (3)是否存在方向向量
          a
          =(1,k)(k≠0)
          的直線l,使得l與曲線C交與兩個(gè)不同的點(diǎn)M,N,且有|
          AM
          |=|
          AN
          |
          ?若存在,求出k的取值范圍;若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知點(diǎn)P為圓周x2+y2=4的動(dòng)點(diǎn),過(guò)P點(diǎn)作PH⊥x軸,垂足為H,設(shè)線段PH的中點(diǎn)為E,記點(diǎn)E的軌跡方程為C,點(diǎn)A(0,1)
          (1)求動(dòng)點(diǎn)E的軌跡方程C;
          (2)若斜率為k的直線l經(jīng)過(guò)點(diǎn)A(0,1)且與曲線C的另一個(gè)交點(diǎn)為B,求△OAB面積的最大值及此時(shí)直線l的方程;
          (3)是否存在方向向量數(shù)學(xué)公式的直線l,使得l與曲線C交與兩個(gè)不同的點(diǎn)M,N,且有數(shù)學(xué)公式?若存在,求出k的取值范圍;若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:0122 期中題 題型:解答題

          已知點(diǎn)P為圓周x2+y2=4的動(dòng)點(diǎn),過(guò)P點(diǎn)作PH⊥x軸,垂足為H,設(shè)線段PH的中點(diǎn)為E,記點(diǎn)E的軌跡方程為C,點(diǎn)A(0,1),
          (1)求動(dòng)點(diǎn)E的軌跡方程C;
          (2)若斜率為k的直線l經(jīng)過(guò)點(diǎn)A(0,1)且與曲線C的另一個(gè)交點(diǎn)為B,求△OAB面積的最大值及此時(shí)直線l的方程;
          (3)是否存在方向向量的直線l,使得l與曲線C交與兩個(gè)不同的點(diǎn)M,N,且有?若存在,求出k的取值范圍;若不存在,說(shuō)明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省濟(jì)寧市鄒城二中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          已知點(diǎn)P為圓周x2+y2=4的動(dòng)點(diǎn),過(guò)P點(diǎn)作PH⊥x軸,垂足為H,設(shè)線段PH的中點(diǎn)為E,記點(diǎn)E的軌跡方程為C,點(diǎn)A(0,1)
          (1)求動(dòng)點(diǎn)E的軌跡方程C;
          (2)若斜率為k的直線l經(jīng)過(guò)點(diǎn)A(0,1)且與曲線C的另一個(gè)交點(diǎn)為B,求△OAB面積的最大值及此時(shí)直線l的方程;
          (3)是否存在方向向量的直線l,使得l與曲線C交與兩個(gè)不同的點(diǎn)M,N,且有?若存在,求出k的取值范圍;若不存在,說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案