日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情
          如圖,在三棱錐P-ABC中,PA,PB,PC兩兩垂直,且PA=5,PB=4,PC=3.設點M為底面ABC內一點,定義f(M)=(m,n,p),其中m,n,p分別為三棱錐M-PAB、M-PBC、M-PCA的體積.若f(M)=(4,3x,3y),且ax-8xy+y≥0恒成立,則正實數a的取值范圍是
          [9,+∞)
          [9,+∞)
          分析:先根據三棱錐的特點求出其體積,然后利用新定義通過體積,推出建立x與y的關系,進而將恒成立問題轉化成最值問題后,解之即可.
          解答:解:∵PA、PB、PC兩兩垂直,且PA=5,PB=4,PC=3.
          ∴V P-ABC=
          1
          3
          ×
          1
          2
          ×3×4×5=10=4+3x+3y
          即x+y=2,且x,y為正數
          若ax-8xy+y≥0恒成立,
          則2(
          1
          x
          +
          a
          y
          )≥16恒成立
          又∵(
          1
          x
          +
          a
          y
          )(x+y)=1+a+
          y
          x
          +
          ax
          y
          ≥1+a+2
          a

          ∴1+a+2
          a
          ≥16
          a
          ≥3或
          a
          ≤-5(舍去)
          即a≥9
          則正實數a的取值范圍是[9,+∞)
          故答案為:[9,+∞)
          點評:本題主要考查了棱錐的體積,同時考查了基本不等式的運用,是題意新穎的一道題目,屬于中檔題.
          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          精英家教網如圖,在三棱錐P-ABC中,PA、PB、PC兩兩垂直,且PA=3.PB=2,PC=1.設M是底面ABC內一點,定義f(M)=(m,n,p),其中m、n、p分別是三棱錐M-PAB、三棱錐M-PBC、三棱錐M-PCA的體積.若f(M)=(
          1
          2
          ,x,y),且
          1
          x
          +
          a
          y
          ≥8恒成立,則正實數a的最小值為
           

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          如圖,在三棱錐P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,則當△AEF的面積最大時,tanθ的值為(  )

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          如圖,在三棱錐P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分別為AB、AC中點.
          (Ⅰ)求證:DE‖平面PBC;
          (Ⅱ)求證:AB⊥PE;
          (Ⅲ)求二面角A-PB-E的大。

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          如圖,在三棱錐P-ABC中,已知PA=PB=PC,∠BPA=∠BPC=∠CPA=40°,一繩子從A點繞三棱錐側面一圈回到點A的最短距離是
          3
          ,則PA=
          1
          1

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          精英家教網如圖,在三棱錐P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,點D,E分別在棱
          PB,PC上,且BC∥平面ADE
          (I)求證:DE⊥平面PAC;
          (Ⅱ)當二面角A-DE-P為直二面角時,求多面體ABCED與PAED的體積比.

          查看答案和解析>>

          同步練習冊答案