日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)f(x)=ax3+cx(a、c∈R),當x=1時,f(x)取得極小值.

          (1)求f(x)的解析式;

          (2)若x1、x2∈[-1,1]時,求證:|f(x1)-f(x2)|≤.

          (1)解:∵f(x)=ax3+cx,∴f′(x)=3ax2+c.

          ∵在x=1時,f(x)取極小值,

          ∴f(x)=x3-x.

          (2)證明:∵f′(x)=x2-1,令f′(x)=0,得x=±1.

          ∴x∈(-∞,-1)或x∈(1,+∞)時,f′(x)>0;x∈(-1,1)時,f′(x)<0.

          ∴f(x)在[-1,1]上是減函數(shù),且f(x)max=f(-1)=,

          f(x)min=f(1)=.

          ∴在x∈[-1,1]上,|f(x)|≤.

          故|f(x1)-f(x2)|≤|f(x1)|+|f(x2)|≤+=


          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          設(shè)函數(shù)f(x)=ax+
          a+1
          x
           
          (a>0)
          ,g(x)=4-x,已知滿足f(x)=g(x)的x有且只有一個.
          (Ⅰ)求a的值;
          (Ⅱ)若f(x)+
          m
          x
          >1
          對一切x>0恒成立,求m的取值范圍;
          (Ⅲ)若函數(shù)h(x)=k-f(x)-g(x)(k∈R)在[m,n]上的值域為[m,n](其中n>m>0),求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設(shè)函數(shù)f(x)=ax-
          bx
          ,曲線y=f(x)在點(2,f(2))處的切線方程為7x-4y-12=0,
          (1)求y=f(x)的解析式,并求其單調(diào)區(qū)間;
          (2)用陰影標出曲線y=f(x)與此切線以及x軸所圍成的圖形,并求此圖形的面積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設(shè)函數(shù)f(x)=
          ax-1x+1
          ;其中a∈R

          (Ⅰ)解不等式f(x)≤1;
          (Ⅱ)求a的取值范圍,使f(x)在區(qū)間(0,+∞)上是單調(diào)減函數(shù).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設(shè)函數(shù)f(x)=ax-
          bx
          ,曲線y=f(x)在點(2,f(2))處的切線方程為7x-4y-12=0.
          (1)求f(x)的解析式;
          (2)討論函數(shù)f(x)的單調(diào)性.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設(shè)函數(shù)f(x)=ax-
          bx
          ,曲線y=f(x)在點(2,f(2))處的切線方程為7x-4y-12=0.
          (1)求f(x)的解析式;
          (2)求函數(shù)f(x)的單調(diào)區(qū)間.

          查看答案和解析>>

          同步練習冊答案