日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,給出定點(diǎn)A(a,0)(a>0,a≠1)和直線l:x=-1,B是直線l上的動(dòng)點(diǎn),∠BOA的角平分線交AB于點(diǎn)C.求點(diǎn)C的軌跡方程,并討論方程表示的曲線類型與a值的關(guān)系.
          分析:欲求點(diǎn)C的軌跡方程,設(shè)點(diǎn)C(x,y),只須求出其坐標(biāo)x,y的關(guān)系式即可,由題意知點(diǎn)C到OA、OB距離相等得到一個(gè)關(guān)系式,化簡(jiǎn)即得點(diǎn)C的軌跡方程,最后對(duì)參數(shù)a進(jìn)行討論來(lái)判斷軌跡是什么圖形即可.
          解答:解:依題意,記B(-1,b)(b∈R),則直線OA和OB的方程分別為y=0和y=-bx.精英家教網(wǎng)
          設(shè)點(diǎn)C(x,y),
          則有0≤x<a,由OC平分∠AOB,知點(diǎn)C到OA、OB距離相等.
          根據(jù)點(diǎn)到直線的距離公式得|y|=
          |y+bx|
          1+b2
          .

          依題設(shè),點(diǎn)C在直線AB上,故有y=-
          b
          1+a
          (x-a).

          由x-a≠0,得b=-
          (1+a)y
          x-a
          .

          將②式代入①式得y2[1+
          (1+a)2y2
          (x-a)2
          ]=[y-
          (1+a)xy
          x-a
          ]2

          整理得y2[(1-a)x2-2ax+(1+a)y2]=0.
          若y≠0,則(1-a)x2-2ax+(1+a)y2=0(0<x<a);
          若y=0,則b=0,∠AOB=π,點(diǎn)C的坐標(biāo)為(0,0),滿足上式.
          綜上得點(diǎn)C的軌跡方程為(1-a)x2-2ax+(1+a)y2=0(0≤x<a)
          因?yàn)閍≠0,所以
          (x-
          a
          1-a
          )
          2
          (
          a
          1-a
          )
          2
          +
          y2
          a2
          1-a
          =1(0≤x<a).

          由此知,當(dāng)0<a<1時(shí),方程③表示橢圓弧段;
          當(dāng)a>1時(shí),方程③表示雙曲線一支的弧段;
          點(diǎn)評(píng):本小題主要考查曲線與方程,直線和圓錐曲線等基礎(chǔ)知識(shí),以及求動(dòng)點(diǎn)軌跡的基本技能和綜合運(yùn)用數(shù)學(xué)知識(shí)解決問(wèn)題的能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,給出定點(diǎn)A(a,0)(a>0,a≠1)和直線l:x=-LB是直線l上的動(dòng)點(diǎn),∠BOA的角平分線交AB于點(diǎn)C,求點(diǎn)C的軌跡方程,并討論方程表示的曲線類型與a值的關(guān)系。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011年高三數(shù)學(xué)復(fù)習(xí)(第8章 圓錐曲線):8.8 求軌跡方程(二)(解析版) 題型:解答題

          如圖,給出定點(diǎn)A(a,0)(a>0,a≠1)和直線l:x=-1,B是直線l上的動(dòng)點(diǎn),∠BOA的角平分線交AB于點(diǎn)C.求點(diǎn)C的軌跡方程,并討論方程表示的曲線類型與a值的關(guān)系.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:1999年全國(guó)統(tǒng)一高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          如圖,給出定點(diǎn)A(a,0)(a>0,a≠1)和直線l:x=-1,B是直線l上的動(dòng)點(diǎn),∠BOA的角平分線交AB于點(diǎn)C.求點(diǎn)C的軌跡方程,并討論方程表示的曲線類型與a值的關(guān)系.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:1999年廣東省高考數(shù)學(xué)試卷(解析版) 題型:解答題

          如圖,給出定點(diǎn)A(a,0)(a>0,a≠1)和直線l:x=-1,B是直線l上的動(dòng)點(diǎn),∠BOA的角平分線交AB于點(diǎn)C.求點(diǎn)C的軌跡方程,并討論方程表示的曲線類型與a值的關(guān)系.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案