日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. k是什么實數(shù)時,直線與拋物線,(1)有兩個交點;

          (2)只有一個交點;(3)無交點

                  

                              

          解:由方程組可得

                              時方程有唯一解,當(dāng)

                            

                   ①當(dāng) k < 1,且時,直線與拋物線有兩個交點。

                   ②當(dāng)時,,直線與拋物線相切,有一個交點(即切點),直線平行于拋物線的對稱軸,也只有一個交點。

                   ③當(dāng)時,,直線與拋物線相離,無交點。


          解析:

          在討論直線與拋物線的位置關(guān)系,判定交點的個數(shù)時,應(yīng)考慮平行于軸的這一特殊情況,不能單純地使用判別式。

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)已知函數(shù)f(x)=-x2+4(x∈(-1,2)),P、Q是f(x)圖象上的任意兩點.
          ①試求直線PQ的斜率kPQ的取值范圍;
          ②求f(x)圖象上任一點切線的斜率k的范圍;
          (2)由(1)你能得出什么結(jié)論?(只須寫出結(jié)論,不必證明),試運用這個結(jié)論解答下面的問題:已知集合MD是滿足下列性質(zhì)函數(shù)f(x)的全體:若函數(shù)f(x)的定義域為D,對任意的x1,x2∈D,(x1≠x2)有|f(x1)-f(x2)|<|x1-x2|.
          ①當(dāng)D=(0,1)時,f(x)=lnx是否屬于MD,若屬于MD,給予證明,否則說明理由;
          ②當(dāng)D=(0,
          3
          3
          )
          ,函數(shù)f(x)=x3+ax+b時,若f(x)∈MD,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (1)已知函數(shù)f(x)=-x2+4(x∈(-1,2)),P、Q是f(x)圖象上的任意兩點.
          ①試求直線PQ的斜率kPQ的取值范圍;
          ②求f(x)圖象上任一點切線的斜率k的范圍;
          (2)由(1)你能得出什么結(jié)論?(只須寫出結(jié)論,不必證明),試運用這個結(jié)論解答下面的問題:已知集合MD是滿足下列性質(zhì)函數(shù)f(x)的全體:若函數(shù)f(x)的定義域為D,對任意的x1,x2∈D,(x1≠x2)有|f(x1)-f(x2)|<|x1-x2|.
          ①當(dāng)D=(0,1)時,f(x)=lnx是否屬于MD,若屬于MD,給予證明,否則說明理由;
          ②當(dāng)數(shù)學(xué)公式,函數(shù)f(x)=x3+ax+b時,若f(x)∈MD,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (1)已知函數(shù)f(x)=-x2+4(x∈(-1,2)),P、Q是f(x)圖象上的任意兩點.
          ①試求直線PQ的斜率kPQ的取值范圍;
          ②求f(x)圖象上任一點切線的斜率k的范圍;
          (2)由(1)你能得出什么結(jié)論?(只須寫出結(jié)論,不必證明),試運用這個結(jié)論解答下面的問題:已知集合MD是滿足下列性質(zhì)函數(shù)f(x)的全體:若函數(shù)f(x)的定義域為D,對任意的x1,x2∈D,(x1≠x2)有|f(x1)-f(x2)|<|x1-x2|.
          ①當(dāng)D=(0,1)時,f(x)=lnx是否屬于MD,若屬于MD,給予證明,否則說明理由;
          ②當(dāng)D=(0,
          3
          3
          )
          ,函數(shù)f(x)=x3+ax+b時,若f(x)∈MD,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:選修2-2綜合測試(解析版) 題型:解答題

          (1)已知函數(shù)f(x)=-x2+4(x∈(-1,2)),P、Q是f(x)圖象上的任意兩點.
          ①試求直線PQ的斜率kPQ的取值范圍;
          ②求f(x)圖象上任一點切線的斜率k的范圍;
          (2)由(1)你能得出什么結(jié)論?(只須寫出結(jié)論,不必證明),試運用這個結(jié)論解答下面的問題:已知集合MD是滿足下列性質(zhì)函數(shù)f(x)的全體:若函數(shù)f(x)的定義域為D,對任意的x1,x2∈D,(x1≠x2)有|f(x1)-f(x2)|<|x1-x2|.
          ①當(dāng)D=(0,1)時,f(x)=lnx是否屬于MD,若屬于MD,給予證明,否則說明理由;
          ②當(dāng),函數(shù)f(x)=x3+ax+b時,若f(x)∈MD,求實數(shù)a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案