日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本題滿分14分)設(shè)直線. 若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點;②對任意xR都有. 則稱直線l為曲線S的“上夾線”.(Ⅰ)已知函數(shù).求證:為曲線的“上夾線”.

          (Ⅱ)觀察下圖:

                     

              根據(jù)上圖,試推測曲線的“上夾線”的方程,并給出證明.


          解析:

          (Ⅰ)由, -------1分

          分當(dāng)時,,此時,, -------2分

          ,所以是直線與曲線的一個切點;-------3分

          當(dāng)時,,此時,, ------4分

          ,所以是直線與曲線的一個切點;  -----5分

          所以直線l與曲線S相切且至少有兩個切點;

          對任意xR,,所以  --------6分

          因此直線是曲線的“上夾線”.        ----------7分

          (Ⅱ)推測:的“上夾線”的方程為       ------9分

          ①先檢驗直線與曲線相切,且至少有兩個切點:

          設(shè): ,

          ,得:kZ)-----10分

          當(dāng)時,

          故:過曲線上的點(,)的切線方程為:

          y[]= [-()],化簡得:

          即直線與曲線相切且有無數(shù)個切點. ----12分

          不妨設(shè),②下面檢驗g(x)F(x)g(x)F(x)=

          直線是曲線的“上夾線”. --------14分

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (本題滿分14分)

          設(shè)函數(shù),。

          (1)若,過兩點的中點作軸的垂線交曲線于點,求證:曲線在點處的切線過點;

          (2)若,當(dāng)恒成立,求實數(shù)的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本題滿分14分)設(shè)函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)求在[—1,2]上的最小值; (3)當(dāng)時,用數(shù)學(xué)歸納法證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011——2012學(xué)年湖北省洪湖二中高三八月份月考試卷理科數(shù)學(xué) 題型:解答題

          (本題滿分14分)設(shè)橢圓的左、右焦點分別為F1
          F2,直線過橢圓的一個焦點F2且與橢圓交于P、Q兩點,若的周長為。
          (1)求橢圓C的方程;
          (2)設(shè)橢圓C經(jīng)過伸縮變換變成曲線,直線與曲線相切
          且與橢圓C交于不同的兩點A、B,若,求面積的取值范圍。(O為坐標(biāo)原點)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省杭州市高三寒假作業(yè)數(shù)學(xué)卷三 題型:解答題

          (本題滿分14分)設(shè)M是由滿足下列條件的函數(shù)構(gòu)成的集合:“①方有實數(shù)根;②函數(shù)的導(dǎo)數(shù)滿足

           (I)證明:函數(shù)是集合M中的元素;

           (II)證明:函數(shù)具有下面的性質(zhì):對于任意,都存在,使得等式成立。 

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省揭陽市高三調(diào)研檢測數(shù)學(xué)理卷 題型:解答題

          本題滿分14分)

          設(shè)函數(shù).

          (1)若,求函數(shù)的極值;

          (2)若,試確定的單調(diào)性;

          (3)記,且上的最大值為M,證明:

           

           

          查看答案和解析>>

          同步練習(xí)冊答案