日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】求橢圓的標(biāo)準(zhǔn)方程
          (1)已知某橢圓的左右焦點分別為F1(﹣1,0),F(xiàn)2(1,0),且經(jīng)過點P( , ),求該橢圓的標(biāo)準(zhǔn)方程;
          (2)已知某橢圓過點( ,﹣1),(﹣1, ),求該橢圓的標(biāo)準(zhǔn)方程.

          【答案】
          (1)解: ,

          又橢圓焦點為(±1,0),所以b=1,

          所以橢圓方程為


          (2)解:設(shè)橢圓方程為mx2+ny2=1,則有

          解得 ,所以橢圓方程為


          【解析】(1)利用橢圓的定義,結(jié)合焦點坐標(biāo)求出基本量,即可求該橢圓的標(biāo)準(zhǔn)方程;(2) 設(shè)橢圓方程為mx2+ny2=1,利用待定系數(shù)法求該橢圓的標(biāo)準(zhǔn)方程.
          【考點精析】解答此題的關(guān)鍵在于理解橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識,掌握橢圓標(biāo)準(zhǔn)方程焦點在x軸:,焦點在y軸:

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】矩形ABCD中,AD=2,AB=4,E,F(xiàn)分別為邊AB,AD的中點,將△ADE沿DE折起,點A,F(xiàn)折起后分別為點A′,F(xiàn)′,得到四棱錐A′﹣BCDE.給出下列幾個結(jié)論:
          ①A′,B,C,F(xiàn)′四點共面;
          ②EF'∥平面A′BC;
          ③若平面A′DE⊥平面BCDE,則CE⊥A′D;
          ④四棱錐A′﹣BCDE體積的最大值為
          其中正確的是(填上所有正確的序號).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐的底面是正方形, ,點E在棱PB上.

          (Ⅰ)求證:平面;

          (Ⅱ)當(dāng)且E為PB的中點時,求AE與平面PDB所成的角的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在△ABC中,已知2sinBcosA=sin(A+C).
          (1)求角A;
          (2)若BC=2,△ABC的面積是 ,求AB.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列說法中,正確的是:( )

          A. 命題“若,則”的否命題為“若,則

          B. 命題“存在,使得”的否定是:“任意,都有

          C. 若命題“非”與命題“”都是真命題,那么命題一定是真命題

          D. 命題“若,則”的逆命題是真命題

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}滿足an+1=2an﹣1(n∈N+),a1=2.
          (1)求證:數(shù)列{an﹣1}為等比數(shù)列,并求數(shù)列{an}的通項公式;
          (2)求數(shù)列{nan}的前n項和Sn(n∈N+).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(1)在等差數(shù)列中,已知,前項和為,且,求當(dāng)取何值時, 取得最大值,并求出它的最大值;

          (2)已知數(shù)列的通項公式是,求數(shù)列的前項和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD.

          (1)證明:平面PQC⊥平面DCQ
          (2)求二面角Q﹣BP﹣C的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知點A(2,0),B(0,2),C(cosα,sinα).
          (1)若 ,且α∈(0,π),求角α的值;
          (2)若 ,求 的值.

          查看答案和解析>>

          同步練習(xí)冊答案