日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓C的中心在原點,焦點在x軸上,左右焦點分別為F1,F(xiàn)2,且|F1F2|=2,點(1,)在橢圓C上.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)過F1的直線l與橢圓C相交于A,B兩點,且△AF2B的面積為,求以F2為圓心且與直線l相切的圓的方程.
          【答案】分析:(Ⅰ)先設出橢圓的方程,根據(jù)題設中的焦距求得c和焦點坐標,根據(jù)點(1,)到兩焦點的距離求得a,進而根據(jù)b=求得b,得到橢圓的方程.
          (Ⅱ)先看當直線l⊥x軸,求得A,B點的坐標進而求得△AF2B的面積與題意不符故排除,進而可設直線l的方程為:y=k(x+1)與橢圓方程聯(lián)立消y,設A(x1,y1),B(x2,y2),根據(jù)韋達定理可求得x1+x2和x1•x2,進而根據(jù)表示出|AB|的距離和圓的半徑,求得k,最后求得圓的半徑,得到圓的方程.
          解答:解:(Ⅰ)設橢圓的方程為,由題意可得:
          橢圓C兩焦點坐標分別為F1(-1,0),F(xiàn)2(1,0).

          ∴a=2,又c=1,b2=4-1=3,
          故橢圓的方程為
          (Ⅱ)當直線l⊥x軸,計算得到:
          ,,不符合題意.
          當直線l與x軸不垂直時,設直線l的方程為:y=k(x+1),
          ,消去y得(3+4k2)x2+8k2x+4k2-12=0
          顯然△>0成立,設A(x1,y1),B(x2,y2),



          又圓F2的半徑,
          所以
          化簡,得17k4+k2-18=0,
          即(k2-1)(17k2+18)=0,解得k=±1
          所以,,
          故圓F2的方程為:(x-1)2+y2=2.
          點評:本題主要考查了橢圓的標準方程和橢圓與直線,橢圓與圓的關系.考查了學生綜合運用所學知識,創(chuàng)造性地解決問題的能力.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源:山東省濟寧市2012屆高二下學期期末考試理科數(shù)學 題型:解答題

          (本小題滿分14分) 已知在平面直角坐標系xoy中的一個橢圓,它的中心在原

          點,左焦

          (1)求該橢圓的標準方程;

          (2)若P是橢圓上的動點,求線段PA中點M的軌跡方程;

          (3)過原點O的直線交橢圓于點B、C,求△ABC面積的最大值。

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012屆山東省高二下學期期末考試理科數(shù)學 題型:解答題

          (本小題滿分14分) 已知在平面直角坐標系xoy中的一個橢圓,它的中心在原

          (1)求該橢圓的標準方程;

          (2)若P是橢圓上的動點,求線段PA中點M的軌跡方程;

          (3)過原點O的直線交橢圓于點B、C,求△ABC面積的最大值。

           

          查看答案和解析>>

          同步練習冊答案