日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 過點(diǎn)(0,1)且與曲線在點(diǎn)(3,2)處的切線垂直的直線的方程為
          [     ]
          A.2x-y+1=0
          B.2x+y-1=0  
          C.x+2y-2=0
          D.x-2y+2=0
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          定義F(x,y)=(1+x)y,x,y∈(0,+∞)
          (1)令函數(shù)f(x)=F(1,log2(x2-4x+9))的圖象為曲線c1,曲線c1與y軸交于點(diǎn)A(0,m),過坐標(biāo)原點(diǎn)O作曲線c1的切線,切點(diǎn)為B(n,t)(n>0)設(shè)曲線c1在點(diǎn)A、B之間的曲線段與OA、OB所圍成圖形的面積為S,求S的值;
          (2)當(dāng)x,y∈N*且x<y時(shí),證明F(x,y)>F(y,x).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)精英家教網(wǎng)如圖1,OA,OB是某地一個(gè)湖泊的兩條互相垂直的湖堤,線段CD和曲線段EF分別是湖泊中的一座棧橋和一條防波堤.為觀光旅游的需要,擬過棧橋CD上某點(diǎn)M分別修建與OA,OB平行的棧橋MG、MK,且以MG、MK為邊建一個(gè)跨越水面的三角形觀光平臺(tái)MGK.建立如圖2所示的直角坐標(biāo)系,測得線段CD的方程是x+2y=20(0≤x≤20),曲線段EF的方程是xy=200(5≤x≤40),設(shè)點(diǎn)M的坐標(biāo)為(s,t),記z=s•t.(題中所涉及的長度單位均為米,棧橋和防波堤都不計(jì)寬度
          (1)求z的取值范圍;
          (2)試寫出三角形觀光平臺(tái)MGK面積S△MGK關(guān)于z的函數(shù)解析式,并求出該面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•淮南二模)已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1,(a>b>0)與雙曲4x2-
          4
          3
          y2=1有相同的焦點(diǎn),且橢C的離心e=
          1
          2
          ,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A,B).
          (1)求橢圓的方程;
          (2)若直MA交直x=4于點(diǎn)P,過P作直線MB的垂線x軸于點(diǎn)Q,Q的坐標(biāo);
          (3)求點(diǎn)P在直線MB上射R的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知焦點(diǎn)在x軸上的雙曲線C的兩條漸近線過坐標(biāo)原點(diǎn),且兩條漸近線與以點(diǎn)A (0,)為圓心,1為半徑的圓相切,又知C的一個(gè)焦點(diǎn)與A關(guān)于y = x對稱.

              (1)求雙曲線C的方程;

              (2)若Q是雙曲線線C上的任一點(diǎn),F1F2為雙曲線C的左、右兩個(gè)焦點(diǎn),從F1引∠F1QF2的平分線的垂線,垂足為N,試求點(diǎn)N的軌跡方程;

              (3)設(shè)直線y = mx + 1與雙曲線C的左支交于A、B兩點(diǎn),另一直線l經(jīng)過M (–2,0)及AB的中點(diǎn),求直線ly軸上的截距b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年山東省聊城市水城中學(xué)高三(上)模塊數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          定義F(x,y)=(1+x)y,x,y∈(0,+∞)
          (1)令函數(shù)f(x)=F(1,log2(x2-4x+9))的圖象為曲線c1,曲線c1與y軸交于點(diǎn)A(0,m),過坐標(biāo)原點(diǎn)O作曲線c1的切線,切點(diǎn)為B(n,t)(n>0)設(shè)曲線c1在點(diǎn)A、B之間的曲線段與OA、OB所圍成圖形的面積為S,求S的值;
          (2)當(dāng)x,y∈N*且x<y時(shí),證明F(x,y)>F(y,x).

          查看答案和解析>>

          同步練習(xí)冊答案