日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】(Ⅰ)求平行于直線x﹣2y+1=0,且與它的距離為2 的直線方程; (Ⅱ)求經(jīng)過(guò)兩直線l1:x﹣2y+4=0和l2:x+y﹣2=0的交點(diǎn)P,且與直線l3:2x+3y+1=0垂直的直線l的方程.

          【答案】解:(Ⅰ)設(shè)與直線x﹣2y+1=0平行的直線方程為x﹣2y+c=0, 在直線x﹣2y+1=0上任取一點(diǎn)P(1,1),
          依題意P到直線x﹣2y+c=0的距離為 ,解得:c=11或c=﹣9
          所求直線方程為:x﹣2y+11=0或x﹣2y﹣9=0
          (Ⅱ)法一:由方程組 ,得 ,
          即P(0,2).l3:2x+3y+1=0的斜率為
          ∵l⊥l3 , ∴ ,(l3斜率(1分),k3k=﹣(11分),結(jié)論1分)
          ∴直線l的方程為 ,
          即l:3x﹣2y+4=0.
          法二:∵直線l過(guò)直線l1和l2的交點(diǎn),
          ∴可設(shè)直線l的方程為x﹣2y+4+λ(x+y﹣2)=0,
          即(1+λ)x+(λ﹣2)y+4﹣2λ=0.l3:2x+3y+1=0的斜率為
          ∵l⊥l3 , ∴ ,
          ∴3(λ﹣2)+2(λ+1)=0,
          ∴λ=
          ∴直線l的方程為3x﹣2y+4=0,(對(duì)照解法一相應(yīng)給分)
          【解析】(Ⅰ)根據(jù)直線平行和平行線的距離求出滿足條件的直線方程即可;(Ⅱ)法一:根據(jù)方程組求出P的坐標(biāo),結(jié)合直線垂直的關(guān)系求出滿足條件的直線方程即可; 法二:根據(jù)直線平行,設(shè)直線l的方程為x﹣2y+4+λ(x+y﹣2)=0,根據(jù)直線的垂直關(guān)系求出直線的斜率,求出參數(shù)的值,從而求出直線方程即可.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知向量 =3 1﹣2 2 , =4 1+ 2 , 其中 1=(1,0), 2=(0,1),求:
          (1) 和| + |的值;
          (2) 夾角θ的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】直線l經(jīng)過(guò)兩點(diǎn)(2,1),(6,3).
          (1)求直線l的方程;
          (2)圓C的圓心在直線l上,并且與x軸相切于(2,0)點(diǎn),求圓C的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知,圓C:x2+y2﹣8y+12=0,直線l:ax+y+2a=0.
          (1)當(dāng)a為何值時(shí),直線l與圓C相切;
          (2)當(dāng)直線l與圓C相交于A,B兩點(diǎn),且AB=2 時(shí),求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知圓C:x2+y2﹣8y+12=0,直線l經(jīng)過(guò)點(diǎn)D(﹣2,0),且斜率為k.
          (1)求以線段CD為直徑的圓E的方程;
          (2)若直線l與圓C相離,求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示,在斜三棱柱ABC﹣A1B1C1中,∠BAC=90°,BC1⊥AC,則C1在面ABC上的射影H必在(
          A.直線AB上
          B.直線BC上
          C.直線CA上
          D.△ABC內(nèi)部

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某省每年損失耕地20萬(wàn)畝,每畝耕地價(jià)值24000元,為了減少耕地?fù)p失,決定按耕地價(jià)格的t%征收耕地占用稅,這樣每年的耕地?fù)p失可減少 t萬(wàn)畝,為了既可減少耕地的損失又保證此項(xiàng)稅收一年不少于9000萬(wàn)元,則t的取值范圍是(
          A.[1,3]
          B.[3,5]
          C.[5,7]
          D.[7,9]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示,在四棱錐P﹣ABCD中,PD⊥平面ABCD,底面ABCD是正方形,PD=AB=2,E為PC中點(diǎn).求二面角E﹣BD﹣P的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】若函數(shù)y=f(x)的圖象上每一點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,再將整個(gè)圖象沿x軸向右平移 個(gè)單位,沿y軸向下平移1個(gè)單位,得到函數(shù)y= sinx的圖象,則y=f(x)的解析式為(
          A.y= sin(2x+ )+1
          B.y= sin(2x﹣ )+1
          C.y= sin( x+ )+1
          D.y= sin( x﹣ )+1

          查看答案和解析>>

          同步練習(xí)冊(cè)答案