日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)y=f(x),x∈N,f(x)∈N,滿足:對任意x1,x2∈N,x1≠x2都有;
          (1)試證明:f(x)為N上的單調(diào)增函數(shù);
          (2)n∈N,且f(0)=1,求證:f(n)≥n+1;
          (3)對任意m,n∈N,有f(n+f(m))=f(n)+1, 證明:
          證明:(1)由知,
          對任意,都有,
          由于a-b<0,從而,所以函數(shù)f(x)為上的單調(diào)增函數(shù)。
          (2) 由(1)可知,都有f(n+1)>f(n),則有f(n+1)≥f(n)+1,
          ∴f(n+1)-f(n)≥1,
          ∴f(n)-f(n-1)≥1,

          ∴f(2)-f(1)≥1,
          ∴f(1)-f(0)≥1,
          由此可得f(n)-f(0)≥n,
          ∴f(n)≥n+1命題得證。
          (3)令m=0,可得出f(0)=1,
          又f(n+1)=f(n)+1,
          則f(n)=n+1,
          。
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)y=f(x+
          1
          2
          )
          為奇函數(shù),設(shè)g(x)=f(x)+1,則g(
          1
          2011
          )+g(
          2
          2011
          )+g(
          3
          2011
          )+g(
          4
          2011
          )+…+g(
          2010
          2011
          )
          =(  )
          A、1005B、2010
          C、2011D、4020

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)y=f(x)=
          lnx
          x

          (1)求函數(shù)y=f(x)的圖象在x=
          1
          e
          處的切線方程;
          (2)求y=f(x)的最大值;
          (3)比較20092010與20102009的大小,并說明為什么?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)y=f(x)=
          lnx
          x

          (1)求函數(shù)y=f(x)的圖象在x=
          1
          e
          處的切線方程;
          (2)求y=f(x)的單調(diào)區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)y=
          f(x)
          ex
          (x∈R)
          滿足f′(x)>f(x),則f(1)與ef(0)的大小關(guān)系為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          給出如下命題:
          命題p:已知函數(shù)y=f(x)=
          1-x3
          ,則|f(a)|<2(其中f(a)表示函數(shù)y=f(x)在x=a時的函數(shù)值);
          命題q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B=∅;
          求實數(shù)a的取值范圍,使命題p,q中有且只有一個為真命題.

          查看答案和解析>>

          同步練習(xí)冊答案